Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The pre-B-cell receptor checkpoint in acute lymphoblastic leukaemia

Abstract

The B-cell receptor (BCR) and its immature form, the precursor-BCR (pre-BCR), have a central role in the control of B-cell development, which is dependent on a sequence of cell-fate decisions at specific antigen-independent checkpoints. Pre-BCR expression provides the first checkpoint, which controls differentiation of pre-B to immature B-cells in normal haemopoiesis. Pre-BCR signalling regulates and co-ordinates diverse processes within the pre-B cell, including clonal selection, proliferation and subsequent maturation. In B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), B-cell development is arrested at this checkpoint. Moreover, malignant blasts avoid clonal extinction by hijacking pre-BCR signalling in favour of the development of BCP-ALL. Here, we discuss three mechanisms that occur in different subtypes of BCP-ALL: (i) blocking pre-BCR expression; (ii) activating pre-BCR-mediated pro-survival and pro-proliferative signalling, while inhibiting cell cycle arrest and maturation; and (iii) bypassing the pre-BCR checkpoint and activating pro-survival signalling through pre-BCR independent alternative mechanisms. A complete understanding of the BCP-ALL-specific signalling networks will highlight their application in BCP-ALL therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Moorman AV . The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev 2012; 26: 123–135.

    Article  CAS  PubMed  Google Scholar 

  2. Pui CH, Mullighan CG, Evans WE, Relling MV . Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 2012; 120: 1165–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roberts KG, Mullighan CG . How new advances in genetic analysis are influencing the understanding and treatment of childhood acute leukemia. Curr Opin Pediatr 2011; 23: 34–40.

    CAS  PubMed  Google Scholar 

  4. Harrison CJ, Haas O, Harbott J, Biondi A, Stanulla M, Trka J et al. Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the Biology and Diagnosis Committee of the International Berlin-Frankfurt-Munster study group. Br J Haematol 2010; 151: 132–142.

    CAS  PubMed  Google Scholar 

  5. Zhang J, Mullighan CG, Harvey RC, Wu G, Chen X, Edmonson M et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2011; 118: 3080–3087.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    CAS  PubMed  Google Scholar 

  7. Moorman AV, Enshaei A, Schwab C, Wade R, Chilton L, Elliott A et al. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia (ALL). Blood 2014; 124: 1434–1444.

    CAS  PubMed  Google Scholar 

  8. le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 2008; 14: 47–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rehe K, Wilson K, Bomken S, Williamson D, Irving J, den Boer ML et al. Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations. EMBO Mol Med 2013; 5: 38–51.

    CAS  PubMed  Google Scholar 

  10. Dick JE . Stem cell concepts renew cancer research. Blood 2008; 112: 4793–4807.

    CAS  PubMed  Google Scholar 

  11. Herzog S, Reth M, Jumaa H . Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 2009; 9: 195–205.

    CAS  PubMed  Google Scholar 

  12. Matthias P, Rolink AG . Transcriptional networks in developing and mature B cells. Nat Rev Immunol 2005; 5: 497–508.

    CAS  PubMed  Google Scholar 

  13. Rickert RC . New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol 2013; 13: 578–591.

    CAS  PubMed  Google Scholar 

  14. Melchers F . The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat Rev Immunol 2005; 5: 578–584.

    CAS  PubMed  Google Scholar 

  15. Kitamura D, Roes J, Kuhn R, Rajewsky K . A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 1991; 350: 423–426.

    CAS  PubMed  Google Scholar 

  16. Hendriks RW, Middendorp S . The pre-BCR checkpoint as a cell-autonomous proliferation switch. Trends Immunol 2004; 25: 249–256.

    CAS  PubMed  Google Scholar 

  17. Clark MR, Mandal M, Ochiai K, Singh H . Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat Rev Immunol 2014; 14: 69–80.

    CAS  PubMed  Google Scholar 

  18. Kuppers R . Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 2005; 5: 251–262.

    PubMed  Google Scholar 

  19. Young RM, Staudt LM . Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov 2013; 12: 229–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Geng H, Hurtz C, Lenz KB, Chen Z, Baumjohann D, Thompson S et al. Self-enforcing feedback activation between BCL6 and pre-B cell receptor signaling defines a distinct subtype of acute lymphoblastic leukemia. Cancer Cell 2015; 27: 409–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 2012; 490: 116–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Burger JA, Okkenhaug K . Haematological cancer: idelalisib-targeting PI3Kdelta in patients with B-cell malignancies. Nat Rev Clin Oncol 2014; 11: 184–186.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010; 463: 88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanzler H, Kuppers R, Hansmann ML, Rajewsky K . Hodgkin and Reed-Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 1996; 184: 1495–1505.

    CAS  PubMed  Google Scholar 

  26. Leithauser F, Bauerle M, Huynh MQ, Moller P . Isotype-switched immunoglobulin genes with a high load of somatic hypermutation and lack of ongoing mutational activity are prevalent in mediastinal B-cell lymphoma. Blood 2001; 98: 2762–2770.

    CAS  PubMed  Google Scholar 

  27. Hobeika E, Nielsen PJ, Medgyesi D . Signaling mechanisms regulating B-lymphocyte activation and tolerance. J Mol Med 2015; 93: 143–158.

    CAS  PubMed  Google Scholar 

  28. Klein F, Feldhahn N, Muschen M . Interference of BCR-ABL1 kinase activity with antigen receptor signaling in B cell precursor leukemia cells. Cell Cycle 2004; 3: 858–860.

    CAS  PubMed  Google Scholar 

  29. Klein F, Feldhahn N, Harder L, Wang H, Wartenberg M, Hofmann WK et al. The BCR-ABL1 kinase bypasses selection for the expression of a pre-B cell receptor in pre-B acute lymphoblastic leukemia cells. J Exp Med 2004; 199: 673–685.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Trageser D, Iacobucci I, Nahar R, Duy C, von Levetzow G, Klemm L et al. Pre-B cell receptor-mediated cell cycle arrest in Philadelphia chromosome-positive acute lymphoblastic leukemia requires IKAROS function. J Exp Med 2009; 206: 1739–1753.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mangum DS, Downie J, Mason CC, Jahromi MS, Joshi D, Rodic V et al. VPREB1 deletions occur independent of lambda light chain rearrangement in childhood acute lymphoblastic leukemia. Leukemia 2014; 28: 216–220.

    CAS  PubMed  Google Scholar 

  32. Swaminathan S, Huang C, Geng H, Chen Z, Harvey R, Kang H et al. BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint. Nat Med 2013; 19: 1014–1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 1996; 16: 6083–6095.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawamata N, Pennella MA, Woo JL, Berk AJ, Koeffler HP . Dominant-negative mechanism of leukemogenic PAX5 fusions. Oncogene 2012; 31: 966–977.

    CAS  PubMed  Google Scholar 

  35. An Q, Wright SL, Konn ZJ, Matheson E, Minto L, Moorman AV et al. Variable breakpoints target PAX5 in patients with dicentric chromosomes: a model for the basis of unbalanced translocations in cancer. Proc Natl Acad Sci USA 2008; 105: 17050–17054.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fazio G, Cazzaniga V, Palmi C, Galbiati M, Giordan M, te Kronnie G et al. PAX5/ETV6 alters the gene expression profile of precursor B cells with opposite dominant effect on endogenous PAX5. Leukemia 2013; 27: 992–995.

    CAS  PubMed  Google Scholar 

  37. Ta VB, de Bruijn MJ, ter Brugge PJ, van Hamburg JP, Diepstraten HJ, van Loo PF et al. Malignant transformation of Slp65-deficient pre-B cells involves disruption of the Arf-Mdm2-p53 tumor suppressor pathway. Blood 2010; 115: 1385–1393.

    CAS  PubMed  Google Scholar 

  38. Jumaa H, Bossaller L, Portugal K, Storch B, Lotz M, Flemming A et al. Deficiency of the adaptor SLP-65 in pre-B-cell acute lymphoblastic leukaemia. Nature 2003; 423: 452–456.

    CAS  PubMed  Google Scholar 

  39. Flemming A, Brummer T, Reth M, Jumaa H . The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat Immunol 2003; 4: 38–43.

    CAS  PubMed  Google Scholar 

  40. Meixlsperger S, Kohler F, Wossning T, Reppel M, Muschen M, Jumaa H . Conventional light chains inhibit the autonomous signaling capacity of the B cell receptor. Immunity 2007; 26: 323–333.

    CAS  PubMed  Google Scholar 

  41. Kersseboom R, Middendorp S, Dingjan GM, Dahlenborg K, Reth M, Jumaa H et al. Bruton's tyrosine kinase cooperates with the B cell linker protein SLP-65 as a tumor suppressor in Pre-B cells. J Exp Med 2003; 198: 91–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dengler HS, Baracho GV, Omori SA, Bruckner S, Arden KC, Castrillon DH et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol 2008; 9: 1388–1398.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakayama J, Yamamoto M, Hayashi K, Satoh H, Bundo K, Kubo M et al. BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood 2009; 113: 1483–1492.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nahar R, Ramezani-Rad P, Mossner M, Duy C, Cerchietti L, Geng H et al. Pre-B cell receptor-mediated activation of BCL6 induces pre-B cell quiescence through transcriptional repression of MYC. Blood 2011; 118: 4174–4178.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

    CAS  PubMed  Google Scholar 

  46. Imai C, Ross ME, Reid G, Coustan-Smith E, Schultz KR, Pui CH et al. Expression of the adaptor protein BLNK/SLP-65 in childhood acute lymphoblastic leukemia. Leukemia 2004; 18: 922–925.

    CAS  PubMed  Google Scholar 

  47. Goodman PA, Wood CM, Vassilev AO, Mao C, Uckun FM . Defective expression of Bruton's tyrosine kinase in acute lymphoblastic leukemia. Leuk Lymphoma 2003; 44: 1011–1018.

    CAS  PubMed  Google Scholar 

  48. Hoshino A, Okuno Y, Migita M, Ban H, Yang X, Kiyokawa N et al. X-linked agammaglobulinemia associated with B-precursor acute lymphoblastic leukemia. J Clin Immunol 2015; 35: 108–111.

    CAS  PubMed  Google Scholar 

  49. Conley ME . Are patients with x-linked agammaglobulinemia at increased risk of developing acute lymphoblastic leukemia? J Clin Immunol 2015; 35: 98–99.

    PubMed  Google Scholar 

  50. Sulong S, Moorman AV, Irving JA, Strefford JC, Konn ZJ, Case MC et al. A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood 2009; 113: 100–107.

    CAS  PubMed  Google Scholar 

  51. Zachariadis V, Schoumans J, Barbany G, Heyman M, Forestier E, Johansson B et al. Homozygous deletions of CDKN2A are present in all dic(9;20)(p13.2;q11.2)-positive B-cell precursor acute lymphoblastic leukaemias and may be important for leukaemic transformation. Br J Haematol 2012; 159: 488–491.

    CAS  PubMed  Google Scholar 

  52. Kitamura D, Kudo A, Schaal S, Muller W, Melchers F, Rajewsky K . A critical role of lambda 5 protein in B cell development. Cell 1992; 69: 823–831.

    CAS  PubMed  Google Scholar 

  53. Bradl H, Jack HM . Surrogate light chain-mediated interaction of a soluble pre-B cell receptor with adherent cell lines. J Immunol 2001; 167: 6403–6411.

    CAS  PubMed  Google Scholar 

  54. Gauthier L, Rossi B, Roux F, Termine E, Schiff C . Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc Natl Acad Sci USA 2002; 99: 13014–13019.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Monroe JG . ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nat Rev Immunol 2006; 6: 283–294.

    CAS  PubMed  Google Scholar 

  56. Kohler F, Hug E, Eschbach C, Meixlsperger S, Hobeika E, Kofer J et al. Autoreactive B cell receptors mimic autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 2008; 29: 912–921.

    PubMed  Google Scholar 

  57. Ubelhart R, Bach MP, Eschbach C, Wossning T, Reth M, Jumaa H . N-linked glycosylation selectively regulates autonomous precursor BCR function. Nat Immunol 2010; 11: 759–765.

    PubMed  Google Scholar 

  58. Su YW, Jumaa H . LAT links the pre-BCR to calcium signaling. Immunity 2003; 19: 295–305.

    CAS  PubMed  Google Scholar 

  59. Yasuda T, Sanjo H, Pages G, Kawano Y, Karasuyama H, Pouyssegur J et al. Erk kinases link pre-B cell receptor signaling to transcriptional events required for early B cell expansion. Immunity 2008; 28: 499–508.

    CAS  PubMed  Google Scholar 

  60. Iritani BM, Forbush KA, Farrar MA, Perlmutter RM . Control of B cell development by Ras-mediated activation of Raf. EMBO J 1997; 16: 7019–7031.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wossning T, Herzog S, Kohler F, Meixlsperger S, Kulathu Y, Mittler G et al. Deregulated Syk inhibits differentiation and induces growth factor-independent proliferation of pre-B cells. J Exp Med 2006; 203: 2829–2840.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Uckun FM, Qazi S . SYK as a new therapeutic target in B-cell precursor acute lymphoblastic leukemia. J Cancer Ther 2014; 5: 124–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Grawunder U, Leu TM, Schatz DG, Werner A, Rolink AG, Melchers F et al. Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 1995; 3: 601–608.

    CAS  PubMed  Google Scholar 

  64. Ochiai K, Maienschein-Cline M, Mandal M, Triggs JR, Bertolino E, Sciammas R et al. A self-reinforcing regulatory network triggered by limiting IL-7 activates pre-BCR signaling and differentiation. Nat Immunol 2012; 13: 300–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Amin RH, Schlissel MS . Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat Immunol 2008; 9: 613–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Feldhahn N, Klein F, Mooster JL, Hadweh P, Sprangers M, Wartenberg M et al. Mimicry of a constitutively active pre-B cell receptor in acute lymphoblastic leukemia cells. J Exp Med 2005; 201: 1837–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Duy C, Yu JJ, Nahar R, Swaminathan S, Kweon SM, Polo JM et al. BCL6 is critical for the development of a diverse primary B cell repertoire. J Exp Med 2010; 207: 1209–1221.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Duy C, Hurtz C, Shojaee S, Cerchietti L, Geng H, Swaminathan S et al. BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature 2011; 473: 384–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Geng H, Brennan S, Milne TA, Chen WY, Li Y, Hurtz C et al. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov 2012; 2: 1004–1023.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bicocca VT, Chang BH, Masouleh BK, Muschen M, Loriaux MM, Druker BJ et al. Crosstalk between ROR1 and the Pre-B cell receptor promotes survival of t(1;19) acute lymphoblastic leukemia. Cancer Cell 2012; 22: 656–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. van der Veer A, van der Velden VH, Willemse ME, Hoogeveen PG, Petricoin EF, Beverloo HB et al. Interference with pre-B-cell receptor signaling offers a therapeutic option for TCF3-rearranged childhood acute lymphoblastic leukemia. Blood Cancer J 2014; 4: e181.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Broome HE, Rassenti LZ, Wang HY, Meyer LM, Kipps TJ . ROR1 is expressed on hematogones (non-neoplastic human B-lymphocyte precursors) and a minority of precursor-B acute lymphoblastic leukemia. Leuk Res 2011; 35: 1390–1394.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fine BM, Stanulla M, Schrappe M, Ho M, Viehmann S, Harbott J et al. Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood 2004; 103: 1043–1049.

    CAS  PubMed  Google Scholar 

  74. Inthal A, Krapf G, Beck D, Joas R, Kauer MO, Orel L et al. Role of the erythropoietin receptor in ETV6/RUNX1-positive acute lymphoblastic leukemia. Clin Cancer Res 2008; 14: 7196–7204.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. van Delft FW, Bellotti T, Luo Z, Jones LK, Patel N, Yiannikouris O et al. Prospective gene expression analysis accurately subtypes acute leukaemia in children and establishes a commonality between hyperdiploidy and t(12;21) in acute lymphoblastic leukaemia. Br J Haematol 2005; 130: 26–35.

    CAS  PubMed  Google Scholar 

  76. Torrano V, Procter J, Cardus P, Greaves M, Ford AM . ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor. Blood 2011; 118: 4910–4918.

    CAS  PubMed  Google Scholar 

  77. Russell LJ, Akasaka T, Majid A, Sugimoto KJ, Loraine Karran E, Nagel I et al. t(6;14)(p22;q32): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 2008; 111: 387–391.

    CAS  PubMed  Google Scholar 

  78. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012; 22: 153–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Russell LJ, De Castro DG, Griffiths M, Telford N, Bernard O, Panzer-Grumayer R et al. A novel translocation, t(14;19)(q32;p13), involving IGH@ and the cytokine receptor for erythropoietin. Leukemia 2009; 23: 614–617.

    CAS  PubMed  Google Scholar 

  80. Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz MJ et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 2009; 114: 2688–2698.

    CAS  PubMed  Google Scholar 

  81. Russell LJ, Enshaei A, Jones L, Erhorn A, Masic D, Bentley H et al. IGH@ Translocations Are Prevalent in Teenagers and Young Adults With Acute Lymphoblastic Leukemia and Are Associated With a Poor Outcome. J Clin Oncol 2014; 32: 1453–1462.

    PubMed  Google Scholar 

  82. Moorman AV, Schwab C, Ensor HM, Russell LJ, Morrison H, Jones L et al. IGH@ translocations, CRLF2 deregulation, and microdeletions in adolescents and adults with acute lymphoblastic leukemia. J Clin Oncol 2012; 30: 3100–3108.

    PubMed  Google Scholar 

  83. Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I, te Kronnie G et al. Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med 2011; 208: 901–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tasian SK, Doral MY, Borowitz MJ, Wood BL, Chen IM, Harvey RC et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 2012; 120: 833–842.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009; 10: 125–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360: 470–480.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014; 371: 1005–1015.

    PubMed  PubMed Central  Google Scholar 

  88. Loh ML, Zhang J, Harvey RC, Roberts K, Payne-Turner D, Kang H et al. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project. Blood 2013; 121: 485–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Trimarchi T, Aifantis I . The pre-BCR to the rescue: therapeutic targeting of pre-B cell ALL. Cancer Cell 2015; 27: 321–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Weiland J, Elder A, Forster V, Heidenreich O, Koschmieder S, Vormoor J . CD19: a multifunctional immunological target molecule and its implications for Blineage acute lymphoblastic leukemia. Pediatr Blood Cancer 2015.

  91. Geng H, Chen Z, Park E, Klemm L, Bailey CC, Muschen M . Ifitm3 (CD225) mediates CD19-dependent survival and proliferation during normal B cell development and In Ph+ ALL. Blood J 2013; vol. 122: 2505–2505.

    Google Scholar 

  92. Hobeika E, Levit-Zerdoun E, Anastasopoulou V, Pohlmeyer R, Altmeier S, Alsadeq A et al. CD19 and BAFF-R can signal to promote B-cell survival in the absence of Syk. Embo J 2015; 34: 925–939.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Konigsberger S, Kiefer F . The BAFFling function of Syk in B-cell homeostasis. EMBO J 2015; 34: 838–840.

    PubMed  PubMed Central  Google Scholar 

  94. Stackelberg Av . A phase 1/2 study of blinatumomab in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood 2013; 122: 70.

    Google Scholar 

  95. Schlegel P, Lang P, Zugmaier G, Ebinger M, Kreyenberg H, Witte KE et al. Pediatric posttransplant relapsed/refractory B-precursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab. Haematologica 2014; 99: 1212–1219.

    PubMed  PubMed Central  Google Scholar 

  96. Hoelzer D . Novel antibody-based therapies for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2011; 2011: 243–249.

    PubMed  Google Scholar 

  97. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010; 115: 2578–2585.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE et al. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 2008; 111: 2230–2237.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hoellenriegel J, Coffey GP, Sinha U, Pandey A, Sivina M, Ferrajoli A et al. Selective, novel spleen tyrosine kinase (Syk) inhibitors suppress chronic lymphocytic leukemia B-cell activation and migration. Leukemia 2012; 26: 1576–1583.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen Z, Shojaee S, Buchner M, Geng H, Lee JW, Klemm L et al. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature 2015; 521: 357–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Burger JA, Buggy JJ . Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765). Leuk Lymphoma 2013; 54: 2385–2391.

    CAS  PubMed  Google Scholar 

  102. Hendriks RW . Drug discovery: new Btk inhibitor holds promise. Nat Chem Biol 2011; 7: 4–5.

    CAS  PubMed  Google Scholar 

  103. Fruman DA, Rommel C . PI3Kdelta inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov 2011; 1: 562–572.

    CAS  PubMed  Google Scholar 

  104. Wiemels JL, Zhang Y, Chang J, Zheng S, Metayer C, Zhang L et al. RAS mutation is associated with hyperdiploidy and parental characteristics in pediatric acute lymphoblastic leukemia. Leukemia 2005; 19: 415–419.

    CAS  PubMed  Google Scholar 

  105. Perentesis JP, Bhatia S, Boyle E, Shao Y, Shu XO, Steinbuch M et al. RAS oncogene mutations and outcome of therapy for childhood acute lymphoblastic leukemia. Leukemia 2004; 18: 685–692.

    CAS  PubMed  Google Scholar 

  106. Tartaglia M, Martinelli S, Cazzaniga G, Cordeddu V, Iavarone I, Spinelli M et al. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 2004; 104: 307–313.

    CAS  PubMed  Google Scholar 

  107. Armstrong SA, Mabon ME, Silverman LB, Li A, Gribben JG, Fox EA et al. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 2004; 103: 3544–3546.

    CAS  PubMed  Google Scholar 

  108. Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood 2004; 103: 1085–1088.

    CAS  PubMed  Google Scholar 

  109. Gustafsson B, Angelini S, Sander B, Christensson B, Hemminki K, Kumar R . Mutations in the BRAF and N-ras genes in childhood acute lymphoblastic leukaemia. Leukemia 2005; 19: 310–312.

    CAS  PubMed  Google Scholar 

  110. Case M, Matheson E, Minto L, Hassan R, Harrison CJ, Bown N et al. Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia. Cancer Res 2008; 68: 6803–6809.

    CAS  PubMed  Google Scholar 

  111. Nicholson L, Knight T, Matheson E, Minto L, Case M, Sanichar M et al. Casitas B lymphoma mutations in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2012; 51: 250–256.

    CAS  PubMed  Google Scholar 

  112. Molteni CG, Te Kronnie G, Bicciato S, Villa T, Tartaglia M, Basso G et al. PTPN11 mutations in childhood acute lymphoblastic leukemia occur as a secondary event associated with high hyperdiploidy. Leukemia 2010; 24: 232–235.

    CAS  PubMed  Google Scholar 

  113. Balgobind BV, Van Vlierberghe P, van den Ouweland AM, Beverloo HB, Terlouw-Kromosoeto JN, van Wering ER et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood 2008; 111: 4322–4328.

    CAS  PubMed  Google Scholar 

  114. Yamamoto T, Isomura M, Xu Y, Liang J, Yagasaki H, Kamachi Y et al. PTPN11, RAS and FLT3 mutations in childhood acute lymphoblastic leukemia. Leuk Res 2006; 30: 1085–1089.

    CAS  PubMed  Google Scholar 

  115. Irving J, Matheson E, Minto L, Blair H, Case M, Halsey C et al. Ras pathway mutations are highly prevalent in relapsed childhood acute lymphoblastic leukaemia, may act as relapse-drivers and confer sensitivity to MEK inhibition. Blood 2014; 124: 3420–3430.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Harrison CJ . Genomic analysis drives tailored therapy in poor risk childhood leukemia. Cancer Cell 2012; 22: 139–140.

    CAS  PubMed  Google Scholar 

  117. Roberts KG, Pei D, Campana D, Payne-Turner D, Li Y, Cheng C et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol 2014; 32: 3012–3020.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from: Marie Curie International Incoming Fellowship (JE), European Research Council, Leukaemia and Lymphoma Research, Cancer Research UK, Kay Kendall Leukaemia Fund and Medical Research Council career development award MR/J008060/1 (DPC), the programme grant from CR‐UK (grant number C27943/A12788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Harrison.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eswaran, J., Sinclair, P., Heidenreich, O. et al. The pre-B-cell receptor checkpoint in acute lymphoblastic leukaemia. Leukemia 29, 1623–1631 (2015). https://doi.org/10.1038/leu.2015.113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.113

This article is cited by

Search

Quick links