Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the treatment of coeliac disease: an immunopathogenic perspective

Key Points

  • As the knowledge of the pathogenesis of coeliac disease has increased, new alternative treatment modes (such as detoxification of gluten) to replace the burdensome gluten-free diet have been suggested

  • Several investigational approaches exist to detoxify gluten in the lumen of the small intestine, including glutenase therapy and polymeric gluten sequestrants

  • Suggested treatment options that prevent gluten-induced effects at the intestinal epithelium include blockers of intestinal permeability and IL-15

  • Other therapeutic options (such as transglutaminase 2 inhibitors and HLA blockers) are based on the prevention of the gluten-induced immunological cascade in the lamina propria

  • Currently, the most advanced drug candidates are in phase II clinical trials

Abstract

Coeliac disease is a common and fairly well-characterized systemic disorder that mainly affects the small intestine, but also has extraintestinal manifestations. The environmental trigger (gluten derived from wheat, rye and barley), the genetic predisposition conferred by the HLA-DQ2 and HLA-DQ8 haplotypes and many steps in the disease pathogenesis are known. This knowledge has enabled researchers to suggest novel alternative treatments or adjunctive therapies to the gluten-free diet, which is currently the only available and effective treatment for the condition. This Review focuses on emerging and potential treatment strategies that are based on the current concept of the disease pathophysiology. The search for novel future treatment modes, including nonpharmacological and pharmacological approaches, is also outlined. The potential pitfalls associated with the various research avenues are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Investigational approaches that work in the lumen of the small intestine that could be used to treat coeliac disease in the future.
Figure 2: Suggested treatment options that prevent gluten-induced effects at the intestinal epithelium.
Figure 3: Therapeutic options based on prevention of immunological cascades in the lamina propria.
Figure 4: Overview of the therapeutic pipeline in coeliac disease.

Similar content being viewed by others

References

  1. Lohiniemi, S. Coeliac disease. Tricky to find, hard to treat, impossible to cure. Lancet 358 (Suppl.), S14 (2001).

    PubMed  Google Scholar 

  2. Jabri, B. & Sollid, L. M. Tissue-mediated control of immunopathology in coeliac disease. Nat. Rev. Immunol. 9, 858–870 (2009).

    CAS  PubMed  Google Scholar 

  3. Lohi, S. et al. Increasing prevalence of coeliac disease over time. Aliment. Pharmacol. Ther. 26, 1217–1225 (2007).

    CAS  PubMed  Google Scholar 

  4. Kumar, P. J. in Changing Features of Coeliac Disease (eds Lohiniemi, S., Collin, P. & Mäki, M.) 45–49 (The Finnish Coeliac Society, 1998).

    Google Scholar 

  5. Latorre, M. & Green, P. H. The role of corticosteroids in celiac disease. Dig. Dis. Sci. 57, 3039–3041 (2012).

    PubMed  Google Scholar 

  6. Viljamaa, M. et al. Is coeliac disease screening in risk groups justified? A fourteen-year follow-up with special focus on compliance and quality of life. Aliment. Pharmacol. Ther. 22, 317–324 (2005).

    CAS  PubMed  Google Scholar 

  7. Dewar, D. H. et al. Celiac disease: management of persistent symptoms in patients on a gluten-free diet. World J. Gastroenterol. 18, 1348–1356 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. Shewry, P. R. & Halford, N. G. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53, 947–958 (2002).

    CAS  PubMed  Google Scholar 

  9. van Overbeek, F. M. et al. The daily gluten intake in relatives of patients with coeliac disease compared with that of the general Dutch population. Eur. J. Gastroenterol. Hepatol. 9, 1097–1099 (1997).

    CAS  PubMed  Google Scholar 

  10. Kasarda, D. D. in Coeliac Disease (eds Mäki, M., Collin, P. & Visakorpi, J. K.) 195–212 (Coeliac Disease Study Group, 1997).

    Google Scholar 

  11. Hausch, F., Shan, L., Santiago, N. A., Gray, G. M. & Khosla, C. Intestinal digestive resistance of immunodominant gliadin peptides. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G996–G1003 (2002).

    CAS  PubMed  Google Scholar 

  12. Shan, L. et al. Structural basis for gluten intolerance in celiac sprue. Science 297, 2275–2279 (2002).

    CAS  PubMed  Google Scholar 

  13. Spaenij-Dekking, L. et al. Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 129, 797–806 (2005).

    CAS  PubMed  Google Scholar 

  14. Di Cagno, R. et al. Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl. Environ. Microbiol. 70, 1088–1096 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Greco, L. et al. Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin. Gastroenterol. Hepatol. 9, 24–29 (2011).

    PubMed  Google Scholar 

  16. Di Cagno, R. et al. Gluten-free sourdough wheat baked goods appear safe for young celiac patients: a pilot study. J. Pediatr. Gastroenterol. Nutr. 51, 777–783 (2010).

    CAS  PubMed  Google Scholar 

  17. Stoven, S., Murray, J. A. & Marietta, E. Celiac disease: advances in treatment via gluten modification. Clin. Gastroenterol. Hepatol. 10, 859–862 (2012).

    PubMed  PubMed Central  Google Scholar 

  18. Gass, J. & Khosla, C. Prolyl endopeptidases. Cell. Mol. Life Sci. 64, 345–355 (2007).

    CAS  PubMed  Google Scholar 

  19. Garcia-Horsman, J. A. et al. Deficient activity of mammalian prolyl oligopeptidase on the immunoactive peptide digestion in coeliac disease. Scand. J. Gastroenterol. 42, 562–571 (2007).

    CAS  PubMed  Google Scholar 

  20. Mitea, C. et al. Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: implications for coeliac disease. Gut 57, 25–32 (2008).

    CAS  PubMed  Google Scholar 

  21. Shan, L., Marti, T., Sollid, L. M., Gray, G. M. & Khosla, C. Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem. J. 383, 311–318 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Edens, L. et al. Extracellular prolyl endoprotease from Aspergillus niger and its use in the debittering of protein hydrolysates. J. Agric. Food Chem. 53, 7950–7957 (2005).

    CAS  PubMed  Google Scholar 

  23. Marti, T. et al. Prolyl endopeptidase-mediated destruction of T cell epitopes in whole gluten: chemical and immunological characterization. J. Pharmacol. Exp. Ther. 312, 19–26 (2005).

    CAS  PubMed  Google Scholar 

  24. Stepniak, D. et al. Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G621–G629 (2006).

    CAS  PubMed  Google Scholar 

  25. Pyle, G. G. et al. Effect of pretreatment of food gluten with prolyl endopeptidase on gluten-induced malabsorption in celiac sprue. Clin. Gastroenterol. Hepatol. 3, 687–694 (2005).

    CAS  PubMed  Google Scholar 

  26. Bethune, M. T., Strop, P., Tang, Y., Sollid, L. M. & Khosla, C. Heterologous expression, purification, refolding, and structural-functional characterization of EP-B2, a self-activating barley cysteine endoprotease. Chem. Biol. 13, 637–647 (2006).

    CAS  PubMed  Google Scholar 

  27. Gass, J., Vora, H., Bethune, M. T., Gray, G. M. & Khosla, C. Effect of barley endoprotease EP-B2 on gluten digestion in the intact rat. J. Pharmacol. Exp. Ther. 318, 1178–1186 (2006).

    CAS  PubMed  Google Scholar 

  28. Bethune, M. T. et al. A non-human primate model for gluten sensitivity. PLoS ONE 3, e1614 (2008).

    PubMed  PubMed Central  Google Scholar 

  29. Siegel, M. et al. Rational design of combination enzyme therapy for celiac sprue. Chem. Biol. 13, 649–658 (2006).

    CAS  PubMed  Google Scholar 

  30. Gass, J., Bethune, M. T., Siegel, M., Spencer, A. & Khosla, C. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology 133, 472–480 (2007).

    CAS  PubMed  Google Scholar 

  31. Siegel, M. et al. Safety, tolerability, and activity of ALV003: results from two phase 1 single, escalating-dose clinical trials. Dig. Dis. Sci. 57, 440–450 (2012).

    CAS  PubMed  Google Scholar 

  32. Tye-Din, J. A. et al. The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin. Immunol. 134, 289–295 (2010).

    CAS  PubMed  Google Scholar 

  33. Lähdeaho, M.-L. et al. ALV003, a novel glutanase, attenuates gluten-induced small intestinal mucosal injury in coeliac disease patients: a randomized controlled phase 2a clinical trial. Gut Suppl. 60, A12 (2011).

    Google Scholar 

  34. Stenman, S. et al. Enzymatic detoxification of gluten by germinating wheat proteases: implications for new treatment of celiac disease. Ann. Med. 41, 390–400 (2009).

    CAS  PubMed  Google Scholar 

  35. Stenman, S. et al. Degradation of coeliac disease-inducing rye secalin by germinating cereal enzymes: diminishing toxic effects in intestinal epithelial cells. Clin. Exp. Immunol. 161, 242–249 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Collado, M. C., Donat, E., Ribes-Koninckx, C., Calabuig, M. & Sanz, Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J. Clin. Pathol. 62, 264–269 (2009).

    CAS  PubMed  Google Scholar 

  37. Wacklin, P. et al. The duodenal microbiota composition of adult celiac disease patients is associated to the clinical manifestation of the disease. Inflamm. Bowel Dis. 19, 934–941 (2013).

    PubMed  Google Scholar 

  38. Lindfors, K. et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin. Exp. Immunol. 152, 552–558 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Laparra, J. M. & Sanz, Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J. Cell. Biochem. 109, 801–807 (2010).

    CAS  PubMed  Google Scholar 

  40. Laparra, J. M., Olivares, M., Gallina, O. & Sanz, Y. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model. PLoS ONE 7, e30744 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Smecuol, E. et al. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J. Clin. Gastroenterol. 47, 139–147 (2013).

    PubMed  Google Scholar 

  42. De Angelis, M. et al. VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for celiac sprue. Biochim. Biophys. Acta 1762, 80–93 (2006).

    CAS  PubMed  Google Scholar 

  43. Pinier, M. et al. Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology 136, 288–298 (2009).

    CAS  PubMed  Google Scholar 

  44. Pinier, M. et al. The copolymer P(HEMA-co-SS) binds gluten and reduces immune response in gluten-sensitized mice and human tissues. Gastroenterology 142, 316–325 (2012).

    CAS  PubMed  Google Scholar 

  45. Smecuol, E. et al. Gastrointestinal permeability in celiac disease. Gastroenterology 112, 1129–1136 (1997).

    CAS  PubMed  Google Scholar 

  46. Ciccocioppo, R. et al. Altered expression, localization, and phosphorylation of epithelial junctional proteins in celiac disease. Am. J. Clin. Pathol. 125, 502–511 (2006).

    CAS  PubMed  Google Scholar 

  47. Tripathi, A. et al. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc. Natl Acad. Sci. 106, 16799–16804 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lammers, K. M. et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 135, 194–204 e193 (2008).

    CAS  PubMed  Google Scholar 

  49. Di Pierro, M. et al. Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J. Biol. Chem. 276, 19160–19165 (2001).

    CAS  PubMed  Google Scholar 

  50. Clemente, M. G. et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut 52, 218–223 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Drago, S. et al. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand. J. Gastroenterol. 41, 408–419 (2006).

    CAS  PubMed  Google Scholar 

  52. Paterson, B. M., Lammers, K. M., Arrieta, M. C., Fasano, A. & Meddings, J. B. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment. Pharmacol. Ther. 26, 757–766 (2007).

    CAS  PubMed  Google Scholar 

  53. Leffler, D. A. et al. A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am. J. Gastroenterol. 107, 1554–1562 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kelly, C. P. et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment. Pharmacol. Ther. 37, 252–262 (2013).

    CAS  PubMed  Google Scholar 

  55. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  56. Rauhavirta, T. et al. Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin A. Clin. Exp. Immunol. 164, 127–136 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Matysiak-Budnik, T. et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J. Exp. Med. 205, 143–154 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mention, J. J. et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125, 730–745 (2003).

    CAS  PubMed  Google Scholar 

  59. Maiuri, L. et al. IL-15 drives the specific migration of CD94+ and TCR-γδ+ intraepithelial lymphocytes in organ cultures of treated celiac patients. Am. J. Gastroenterol. 96, 150–156 (2001).

    CAS  PubMed  Google Scholar 

  60. Hüe, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004).

    PubMed  Google Scholar 

  61. Ohta, N. et al. IL-15-dependent activation-induced cell death-resistant Th1 type CD8 αβ+NK1.1+ T cells for the development of small intestinal inflammation. J. Immunol. 169, 460–468 (2002).

    CAS  PubMed  Google Scholar 

  62. Maiuri, L. et al. Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology 119, 996–1006 (2000).

    CAS  PubMed  Google Scholar 

  63. Sarra, M. et al. IL-15 positively regulates IL-21 production in celiac disease mucosa. Mucosal Immunol. 6, 244–255 (2013).

    CAS  PubMed  Google Scholar 

  64. Malamut, G. et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J. Clin. Invest. 120, 2131–2143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Villanacci, V. et al. Mucosal tissue transglutaminase expression in celiac disease. J. Cell. Mol. Med. 13, 334–340 (2009).

    CAS  PubMed  Google Scholar 

  66. Klock, C. & Khosla, C. Regulation of the activities of the mammalian transglutaminase family of enzymes. Protein Sci. 21, 1781–1791 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Dieterich, W. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 3, 797–801 (1997).

    CAS  PubMed  Google Scholar 

  68. Molberg, O. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med. 4, 713–717 (1998).

    CAS  PubMed  Google Scholar 

  69. Henderson, K. N. et al. A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 27, 23–34 (2007).

    CAS  PubMed  Google Scholar 

  70. Siegel, M. & Khosla, C. Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol. Ther. 115, 232–245 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rauhavirta, T. et al. Are transglutaminase 2 inhibitors able to reduce gliadin-induced toxicity related to celiac disease? A proof-of-concept study. J. Clin. Immunol. 33, 134–142 (2013).

    CAS  PubMed  Google Scholar 

  72. Molberg, O. et al. T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur. J. Immunol. 31, 1317–1323 (2001).

    CAS  PubMed  Google Scholar 

  73. Lebreton, C. et al. Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology 143, 698–707 (2012).

    CAS  PubMed  Google Scholar 

  74. Xia, J. et al. Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Bioorg. Med. Chem. 15, 6565–6573 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kapoerchan, V. V. et al. Design of azidoproline containing gluten peptides to suppress CD4+ T-cell responses associated with celiac disease. Bioorg. Med. Chem. 16, 2053–2062 (2008).

    CAS  PubMed  Google Scholar 

  76. Juse, U., van de Wal, Y., Koning, F., Sollid, L. M. & Fleckenstein, B. Design of new high-affinity peptide ligands for human leukocyte antigen-DQ2 using a positional scanning peptide library. Hum. Immunol. 71, 475–481 (2010).

    CAS  PubMed  Google Scholar 

  77. Huan, J. et al. Single-chain recombinant HLA-DQ2.5/peptide molecules block α2-gliadin-specific pathogenic CD4+ T-cell proliferation and attenuate production of inflammatory cytokines: a potential therapy for celiac disease. Mucosal Immunol. 4, 112–120 (2011).

    CAS  PubMed  Google Scholar 

  78. Sollid, L. M. & Khosla, C. Novel therapies for coeliac disease. J. Intern. Med. 269, 604–613 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Salvati, V. M. et al. Recombinant human interleukin 10 suppresses gliadin dependent T cell activation in ex vivo cultured coeliac intestinal mucosa. Gut 54, 46–53 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mulder, C. J., Wahab, P. J., Meijer, J. W. & Metselaar, E. A pilot study of recombinant human interleukin-10 in adults with refractory coeliac disease. Eur. J. Gastroenterol. Hepatol. 13, 1183–1188 (2001).

    CAS  PubMed  Google Scholar 

  81. Gillett, H. R. et al. Successful infliximab treatment for steroid-refractory celiac disease: a case report. Gastroenterology 122, 800–805 (2002).

    PubMed  Google Scholar 

  82. Neurath, M. F. & Travis, S. P. Mucosal healing in inflammatory bowel diseases: a systematic review. Gut 61, 1619–1635 (2012).

    CAS  PubMed  Google Scholar 

  83. Costantino, G. et al. Treatment of life-threatening type I refractory coeliac disease with long-term infliximab. Dig. Liver Dis. 40, 74–77 (2008).

    CAS  PubMed  Google Scholar 

  84. Reinisch, W. et al. Fontolizumab in moderate to severe Crohn's disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm. Bowel Dis. 16, 233–242 (2010).

    PubMed  Google Scholar 

  85. Abraham, M. et al. In vitro induction of regulatory T cells by anti-CD3 antibody in humans. J. Autoimmun. 30, 21–28 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hmida, N. B. et al. Impaired control of effector T cells by regulatory T cells: a clue to loss of oral tolerance and autoimmunity in celiac disease? Am. J. Gastroenterol. 107, 604–611 (2012).

    CAS  PubMed  Google Scholar 

  87. Edwards, J. C. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    CAS  PubMed  Google Scholar 

  88. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    CAS  PubMed  Google Scholar 

  89. Lindfors, K., Mäki, M. & Kaukinen, K. Transglutaminase 2-targeted autoantibodies in celiac disease: pathogenetic players in addition to diagnostic tools? Autoimmun. Rev. 9, 744–749 (2010).

    CAS  PubMed  Google Scholar 

  90. Mei, H. E. et al. Steady-state generation of mucosal IgA+ plasmablasts is not abrogated by B-cell depletion therapy with rituximab. Blood 116, 5181–5190 (2010).

    CAS  PubMed  Google Scholar 

  91. Simon-Vecsei, Z. et al. A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc. Natl Acad. Sci. USA 109, 431–436 (2012).

    CAS  PubMed  Google Scholar 

  92. Mora, J. R. & von Andrian, U. H. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 1, 96–109 (2008).

    CAS  PubMed  Google Scholar 

  93. Olaussen, R. W. et al. Reduced chemokine receptor 9 on intraepithelial lymphocytes in celiac disease suggests persistent epithelial activation. Gastroenterology 132, 2371–2382 (2007).

    CAS  PubMed  Google Scholar 

  94. Di Sabatino, A. et al. Increased expression of mucosal addressin cell adhesion molecule 1 in the duodenum of patients with active celiac disease is associated with depletion of integrin α4β7-positive T cells in blood. Hum. Pathol. 40, 699–704 (2009).

    CAS  PubMed  Google Scholar 

  95. Mora, J. R. Homing imprinting and immunomodulation in the gut: role of dendritic cells and retinoids. Inflamm. Bowel Dis. 14, 275–289 (2008).

    PubMed  Google Scholar 

  96. US National Library of Medicine. ClinicalTrials.gov [online], (2008).

  97. Cassani, B. et al. Gut-tropic T cells that express integrin α4β7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 141, 2109–2118 (2011).

    CAS  PubMed  Google Scholar 

  98. Wermers, J. D., McNamee, E. N., Wurbel, M. A., Jedlicka, P. & Rivera-Nieves, J. The chemokine receptor CCR9 is required for the T-cell-mediated regulation of chronic ileitis in mice. Gastroenterology 140, 1526–1535 (2011).

    CAS  PubMed  Google Scholar 

  99. Wurbel, M. A., McIntire, M. G., Dwyer, P. & Fiebiger, E. CCL25/CCR9 interactions regulate large intestinal inflammation in a murine model of acute colitis. PLoS ONE 6, e16442 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tye-Din, J. A. et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Transl. Med. 2, 41ra51 (2010).

    PubMed  Google Scholar 

  101. Daveson, A. J. et al. Effect of hookworm infection on wheat challenge in celiac disease—a randomised double-blinded placebo controlled trial. PLoS ONE 6, e17366 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Arentz-Hansen, H. et al. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J. Exp. Med. 191, 603–612 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  104. Wigren, M. et al. Evidence for a role of regulatory T cells in mediating the atheroprotective effect of apolipoprotein B peptide vaccine. J. Intern. Med. 269, 546–556 (2011).

    CAS  PubMed  Google Scholar 

  105. McSorley, H. J. et al. Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection. PLoS ONE 6, e24092 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Croese, J., Gaze, S. T. & Loukas, A. Changed gluten immunity in celiac disease by Necator americanus provides new insights into autoimmunity. Int. J. Parasitol. 43, 275–282 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Celiac Disease Study Group have been financially supported by the Academy of Finland, the Sigrid Juselius Foundation, the Competitive State Research Financing of the Expert Responsibility Area of Tampere University Hospital (grant numbers 9P020 and 9P033), Elna Kaarina Savolainen's fund allocated for the development of cancer treatment, Pediatric Research Foundation and the European Commission IAPP grant TRANSCOM (Contract number PIA-GA-2010-251506).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Katri Kaukinen.

Ethics declarations

Competing interests

M. Mäki is a member of the Scientific Advisory Board of Alvine Pharmaceuticals, ImmusanT and Flamentera AG and is a member of the Clinical Advisory Board of BioLineRx. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaukinen, K., Lindfors, K. & Mäki, M. Advances in the treatment of coeliac disease: an immunopathogenic perspective. Nat Rev Gastroenterol Hepatol 11, 36–44 (2014). https://doi.org/10.1038/nrgastro.2013.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing