Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Robotic pelvic organ prolapse surgery

Key Points

  • 10 years of data support the efficacy and safety of robotic sacrocolpopexy (RSC)

  • RSC is associated with less blood loss, pain, and faster recovery time than abdominal sacrocolpopexy (ASC)

  • RSC has a shorter learning curve than LSC

  • Success with RSC depends on meticulous attention at several key surgical points

Abstract

Robotic sacrocolpopexy (RSC) has rapidly gained popularity over the past 10 years, owing to claims that it is associated with a reduced learning curve compared with standard laparoscopic sacrocolpopexy (LSC) and that it has equal efficacy to the gold-standard treatment, abdominal sacrocolpopexy (ASC). The specifics of the surgical technique used for RSC vary widely, but the basic steps and principles are largely the same. Although complication rates are low, specific complications can be minimized by meticulous attention to surgical technique at several important points in the procedure. Multiple levels of evidence support the efficacy of RSC, and show that it is associated with a shorter hospital stay and convalescence than ASC. The learning curve for RSC usually comprises 10–20 procedures but for those with extensive experience of laparoscopy it is likely to be even shorter. RSC is more expensive than LSC but cheaper than ASC. As RSC has only been used for about a decade, we await long-term outcomes of more than a few years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The abdominal sacrocolpopexy.
Figure 2: An example of a 'W' port configuration for RSC and important structures to avoid.
Figure 3: Performing a sacrohysteropexy.

Similar content being viewed by others

References

  1. Wu, J. M., Matthews, C. A., Conover, M. M., Pate, V. & Jonsson Funk, M. Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet. Gynecol. 123, 1201–1206 (2014).

    Article  Google Scholar 

  2. Lane, F. E. Repair of posthysterectomy vaginal-vault prolapse. Obstet. Gynecol. 20, 72–77 (1962).

    Article  CAS  Google Scholar 

  3. Nygaard, I. et al. Abdominal sacrocolpopexy: a comprehensive review. Obstet. Gynecol. 104, 805–823 (2004).

    Article  Google Scholar 

  4. Nezhat, C. H., Nezhat, F. & Nezhat, C. Laparoscopic sacral colpopexy for vaginal vault prolapse. Obstet. Gynecol. 84, 885–888 (1994).

    CAS  PubMed  Google Scholar 

  5. Ganatra, A. M. et al. The current status of laparoscopic sacrocolpopexy: a review. Eur. Urol. 55, 1089–1103 (2009).

    Article  Google Scholar 

  6. Tarr, M. E. et al. Comparison of postural ergonomics between laparoscopic and robotic sacrocolpopexy: a pilot study. J. Minim. Invasive Gynecol. 22, 234–238 (2015).

    Article  Google Scholar 

  7. Di Marco, D. S., Chow, G. K., Gettman, M. T. & Elliott, D. S. Robotic-assisted laparoscopic sacrocolpopexy for treatment of vaginal vault prolapse. Urology 63, 373–376 (2004).

    Article  Google Scholar 

  8. Anger, J. T. et al. Robotic compared with laparoscopic sacrocolpopexy: a randomized controlled trial. Obstet. Gynecol. 123, 5–12 (2014).

    Article  Google Scholar 

  9. Paraiso, M. F., Jelovsek, J. E., Frick, A., Chen, C. C. & Barber, M. D. Laparoscopic compared with robotic sacrocolpopexy for vaginal prolapse: a randomized controlled trial. Obstet. Gynecol. 118, 1005–1013 (2011).

    Article  Google Scholar 

  10. Serati, M. et al. Robot-assisted sacrocolpopexy for pelvic organ prolapse: a systematic review and meta-analysis of comparative studies. Eur. Urol. 66, 303–318 (2014).

    Article  Google Scholar 

  11. Lowenstein, L. et al. Steep Trendelenburg position during robotic sacrocolpopexy and heart rate variability. Eur. J. Obstet. Gynecol. Reprod. Biol. 178, 66–69 (2014).

    Article  Google Scholar 

  12. Ghomi, A., Kramer, C., Askari, R., Chavan, N. R. & Einarsson, J. I. Trendelenburg position in gynecologic robotic-assisted surgery. J. Minim. Invasive Gynecol. 19, 485–489 (2012).

    Article  Google Scholar 

  13. Osmundsen, B. C. et al. Mesh erosion in robotic sacrocolpopexy. Female Pelvic Med. Reconstr. Surg. 18, 86–88 (2012).

    Article  Google Scholar 

  14. Germain, A. et al. Long-term outcomes after totally robotic sacrocolpopexy for treatment of pelvic organ prolapse. Surg. Endosc. 27, 525–529 (2013).

    Article  CAS  Google Scholar 

  15. Ploumidis, A. et al. Robot-assisted sacrocolpopexy for pelvic organ prolapse: surgical technique and outcomes at a single high-volume institution. Eur. Urol. 65, 138–145 (2014).

    Article  Google Scholar 

  16. Mourik, S. L., Martens, J. E. & Aktas, M. Uterine preservation in pelvic organ prolapse using robot assisted laparoscopic sacrohysteropexy: quality of life and technique. Eur. J. Obstet. Gynecol. Reprod. Biol. 165, 122–127 (2012).

    Article  Google Scholar 

  17. Moreno Sierra, J. et al. Long-term outcomes after robotic sacrocolpopexy in pelvic organ prolapse: prospective analysis. Urol. Int. 86, 414–418 (2011).

    Article  Google Scholar 

  18. Vitobello, D., Siesto, G. & Bulletti, C. Robotic sacral hysteropexy for pelvic organ prolapse. Int. J. Med. Robot. 8, 114–117 (2012).

    Article  Google Scholar 

  19. Ayav, A., Bresler, L., Hubert, J., Brunaud, L. & Boissel, P. Robotic-assisted pelvic organ prolapse surgery. Surg. Endosc. 19, 1200–1203 (2005).

    Article  CAS  Google Scholar 

  20. Lee, T., Rosenblum, N., Nitti, V. & Brucker, B. M. Uterine sparing robotic-assisted laparoscopic sacrohysteropexy for pelvic organ prolapse: safety and feasibility. J. Endourol. 27, 1131–1136 (2013).

    Article  Google Scholar 

  21. Benson, A. D., Kramer, B. A., Wayment, R. O. & Schwartz, B. F. Supracervical robotic-assisted laparoscopic sacrocolpopexy for pelvic organ prolapse. JSLS 14, 525–530 (2010).

    Article  Google Scholar 

  22. Geller, E. J., Parnell, B. A. & Dunivan, G. C. Pelvic floor function before and after robotic sacrocolpopexy: one-year outcomes. J. Minim. Invasive Gynecol. 18, 322–327 (2011).

    Article  Google Scholar 

  23. Geller, E. J., Lin, F. C. & Matthews, C. A. Analysis of robotic performance times to improve operative efficiency. J. Minim. Invasive Gynecol. 20, 43–48 (2013).

    Article  Google Scholar 

  24. Hoyte, L., Rabbanifard, R., Mezzich, J., Bassaly, R. & Downes, K. Cost analysis of open versus robotic-assisted sacrocolpopexy. Female Pelvic Med. Reconstr. Surg. 18, 335–339 (2012).

    Article  Google Scholar 

  25. Matthews, C. A., Carroll, A., Hill, A., Ramakrishnan, V. & Gill, E. J. Prospective evaluation of surgical outcomes of robot-assisted sacrocolpopexy and sacrocervicopexy for the management of apical pelvic support defects. South. Med. J. 105, 274–278 (2012).

    Article  Google Scholar 

  26. Siddiqui, N. Y., Geller, E. J. & Visco, A. G. Symptomatic and anatomic 1-year outcomes after robotic and abdominal sacrocolpopexy. Am. J. Obstet. Gynecol. 206, 435.e1–435.e5 (2012).

    Article  Google Scholar 

  27. Unger, C. A., Paraiso, M. F., Jelovsek, J. E., Barber, M. D. & Ridgeway, B. Perioperative adverse events after minimally invasive abdominal sacrocolpopexy. Am. J. Obstet. Gynecol. 211, 547.e1–547.e8 (2014).

    Article  Google Scholar 

  28. Akl, M. N. et al. Robotic-assisted sacrocolpopexy: technique and learning curve. Surg. Endosc. 23, 2390–2394 (2009).

    Article  Google Scholar 

  29. Bedaiwy, M. A. et al. The impact of training residents on the outcome of robotic-assisted sacrocolpopexy. Minim. Invasive Surg. http://dx.doi.org/10.1155/2012/289342 (2012).

  30. Borahay, M. A. et al. Outcomes of robotic sacrocolpopexy using barbed delayed absorbable sutures. J. Minim. Invasive Gynecol. 21, 412–416 (2014).

    Article  Google Scholar 

  31. Culligan, P. J. et al. Subjective and objective results 1 year after robotic sacrocolpopexy using a lightweight Y-mesh. Int. Urogynecol. J. 25, 731–735 (2014).

    Article  Google Scholar 

  32. Pulliam, S. J., Weinstein, M. M. & Wakamatsu, M. M. Minimally invasive apical sacropexy: a retrospective review of laparoscopic and robotic operating room experiences. Female Pelvic Med. Reconstr. Surg. 18, 122–126 (2012).

    Article  Google Scholar 

  33. US Food and Drud Administration. Quantitative Assessment of the Prevalence of Unsuspected Uterine Sarcoma in Women Undergoing Treatment of Uterine Fibroids [online], (2014).

  34. Wan, O. Y., Cheung, R. Y., Chan, S. S. & Chung, T. K. Risk of malignancy in women who underwent hysterectomy for uterine prolapse. Aust. N. Z. J. Obstet. Gynaecol. 53, 190–196 (2013).

    Article  Google Scholar 

  35. Crane, A. K., Geller, E. J. & Matthews, C. A. Outlet constipation 1 year after robotic sacrocolpopexy with and without concomitant posterior repair. South. Med. J. 106, 409–414 (2013).

    Article  Google Scholar 

  36. Louis-Sylvestre, C. & Herry, M. Robotic-assisted laparoscopic sacrocolpopexy for stage III pelvic organ prolapse. Int. Urogynecol. J. 24, 731–733 (2013).

    Article  Google Scholar 

  37. Salamon, C. G., Lewis, C., Priestley, J., Gurshumov, E. & Culligan, P. J. Prospective study of an ultra-lightweight polypropylene Y mesh for robotic sacrocolpopexy. Int. Urogynecol. J. 24, 1371–1375 (2013).

    Article  Google Scholar 

  38. Tan-Kim, J., Menefee, S. A., Luber, K. M., Nager, C. W. & Lukacz, E. S. Robotic-assisted and laparoscopic sacrocolpopexy: comparing operative times, costs and outcomes. Female Pelvic Med. Reconstr. Surg. 17, 44–49 (2011).

    Article  Google Scholar 

  39. Barboglio, P. G., Toler, A. J. & Triaca, V. Robotic sacrocolpopexy for the management of pelvic organ prolapse: a review of midterm surgical and quality of life outcomes. Female Pelvic Med. Reconstr. Surg. 20, 38–43 (2014).

    Article  Google Scholar 

  40. Geller, E. J., Parnell, B. A. & Dunivan, G. C. Robotic vs abdominal sacrocolpopexy: 44-month pelvic floor outcomes. Urology 79, 532–536 (2012).

    Article  Google Scholar 

  41. Awad, N. et al. Implementation of a new procedure: laparoscopic versus robotic sacrocolpopexy. Arch. Gynecol. Obstet. 287, 1181–1186 (2013).

    Article  Google Scholar 

  42. Azadi, A. et al. The anatomical outcome of robotic sacrocolpopexy for treatment of pelvic organ prolapse: a comparison of obese and non-obese patients. Surg. Technol. Int. 24, 249–252 (2014).

    PubMed  Google Scholar 

  43. Goldman, H. B. in Expert opinions in female pelvic medicine and reconstructive surgery. Ch. 33 (eds Vasavada, S. P. & Goldman, H. B.) 171–172 (JP Medical Publishers, 2013).

    Google Scholar 

  44. Belsante, M., Murray, S., Dillon, B. & Zimmern, P. Mid term outcome of robotic mesh sacrocolpopexy. Can. J. Urol. 20, 6656–6661 (2013).

    PubMed  Google Scholar 

  45. Kramer, B. A., Whelan, C. M., Powell, T. M. & Schwartz, B. F. Robot-assisted laparoscopic sacrocolpopexy as management for pelvic organ prolapse. J. Endourol. 23, 655–658 (2009).

    Article  Google Scholar 

  46. Shepherd, J. P., Higdon, H. L. III, Stanford, E. J. & Mattox, T. F. Effect of suture selection on the rate of suture or mesh erosion and surgery failure in abdominal sacrocolpopexy. Female Pelvic Med. Reconstr. Surg. 16, 229–233 (2010).

    Article  Google Scholar 

  47. Chan, C. M., Liang, H. H., Go, W. W., To, W. W. & Mok, K. M. Laparoscopic sacrocolpopexy for uterine and post-hysterectomy prolapse: anatomical and functional outcomes. Hong Kong Med. J. 17, 301–305 (2011).

    CAS  PubMed  Google Scholar 

  48. Muffly, T. M., Diwadkar, G. B. & Paraiso, M. F. Lumbosacral osteomyelitis after robot-assisted total laparoscopic hysterectomy and sacral colpopexy. Int. Urogynecol. J. 21, 1569–1571 (2010).

    Article  Google Scholar 

  49. Nosseir, S. B., Kim, Y. H., Lind, L. R. & Winkler, H. A. Sacral osteomyelitis after robotically assisted laparoscopic sacral colpopexy. Obstet. Gynecol. 116 (Suppl.), 513–515 (2010).

    Article  Google Scholar 

  50. Good, M. M. et al. Preventing L5–S1 discitis associated with sacrocolpopexy. Obstet. Gynecol. 121, 285–290 (2013).

    Article  Google Scholar 

  51. Anand, M., Tanouye, S. L. & Gebhart, J. B. Vesicosacrofistulization after robotically assisted laparoscopic sacrocolpopexy. Female Pelvic Med. Reconstr. Surg. 20, 180–183 (2014).

    Article  Google Scholar 

  52. White, A. B. et al. Optimal location and orientation of suture placement in abdominal sacrocolpopexy. Obstet. Gynecol. 113, 1098–1103 (2009).

    Article  Google Scholar 

  53. Graham, E., Akl, A., Brubaker, L., Fitzgerald, C. M. & Mueller, E. R. Disk at risk: sacral suture depth in minimally invasive sacrocolpopexy. Female Pelvic Med. Reconstr. Surg. 20, S226 (2014).

    Google Scholar 

  54. Anand, M. et al. Perioperative complications of robotic sacrocolpopexy for post-hysterectomy vaginal vault prolapse. Int. Urogynecol. J. 25, 1193–1200 (2014).

    Article  Google Scholar 

  55. Elneil, S. et al. Abdominal sacrocolpopexy for vault prolapse without burial of mesh: a case series. BJOG 112, 486–489 (2005).

    Article  Google Scholar 

  56. Elliott, D. S., Krambeck, A. E. & Chow, G. K. Long-term results of robotic assisted laparoscopic sacrocolpopexy for the treatment of high grade vaginal vault prolapse. J. Urol. 176, 655–659 (2006).

    Article  Google Scholar 

  57. Barber, M. D. et al. Defining success after surgery for pelvic organ prolapse. Obstet. Gynecol. 114, 600–609 (2009).

    Article  Google Scholar 

  58. Swift, S. E., Tate, S. B. & Nicholas, J. Correlation of symptoms with degree of pelvic organ support in a general population of women: what is pelvic organ prolapse? Am. J. Obstet. Gynecol. 189, 372–379 (2003).

    Article  Google Scholar 

  59. Merseburger, A. S. et al. EAU guidelines on robotic and single-site surgery in urology. Eur. Urol. 64, 277–291 (2013).

    Article  Google Scholar 

  60. De La Cruz, J. F., Myers, E. M. & Geller, E. J. Vaginal versus robotic hysterectomy and concomitant pelvic support surgery: a comparison of postoperative vaginal length and sexual function. J. Minim. Invasive Gynecol. 21, 1010–1014 (2014).

    Article  Google Scholar 

  61. Elliott, C. S. et al. Robot-assisted versus open sacrocolpopexy: a cost-minimization analysis. J. Urol. 187, 638–643 (2012).

    Article  Google Scholar 

  62. Paraiso, M. F. & Chen, C. C. Laparoscopic surgery for pelvic organ prolapse. Minerva Ginecol. 58, 381–391 (2006).

    CAS  PubMed  Google Scholar 

  63. Gocmen, A., Sanlikan, F. & Ucar, M. G. Robotic-assisted sacrocolpopexy/sacrocervicopexy repair of pelvic organ prolapse: initial experience. Arch. Gynecol. Obstet. 285, 683–688 (2012).

    Article  Google Scholar 

  64. Seror, J. et al. Prospective comparison of short-term functional outcomes obtained after pure laparoscopic and robot-assisted laparoscopic sacrocolpopexy. World J. Urol. 30, 393–398 (2012).

    Article  Google Scholar 

  65. Xylinas, E. et al. Robot-assisted laparoscopic sacral colpopexy: initial experience in a high-volume laparoscopic reference center. J. Endourol. 24, 1985–1989 (2010).

    Article  Google Scholar 

  66. Collins, S. A., Tulikangas, P. K. & O'Sullivan, D. M. Effect of surgical approach on physical activity and pain control after sacral colpopexy. Am. J. Obstet. Gynecol. 206, 438.e1–438.e6 (2012).

    Article  Google Scholar 

  67. Li, H. et al. Utilization and perioperative outcomes of robotic vaginal vault suspension compared to abdominal or vaginal approaches for pelvic organ prolapse. Can. Urol. Assoc. J. 8, 100–106 (2014).

    Article  Google Scholar 

  68. Nosti, P. A. et al. Outcomes of abdominal and minimally invasive sacrocolpopexy: a retrospective cohort study. Female Pelvic Med. Reconstr. Surg. 20, 33–37 (2014).

    Article  Google Scholar 

  69. Antosh, D. D. et al. Short-term outcomes of robotic versus conventional laparoscopic sacral colpopexy. Female Pelvic Med. Reconstr. Surg. 18, 158–161 (2012).

    Article  Google Scholar 

  70. Robinson, B. L. et al. Robotic versus vaginal urogynecologic surgery: a retrospective cohort study of perioperative complications in elderly women. Female Pelvic Med. Reconstr. Surg. 94, 230–237 (2013).

    Article  Google Scholar 

  71. Desai, P. H., Lin, J. F. & Slomovitz, B. M. Milestones to optimal adoption of robotic technology in gynecology. Obstet. Gynecol. 123, 13–20 (2014).

    Article  Google Scholar 

  72. Judd, J. P. et al. Cost-minimization analysis of robotic-assisted, laparoscopic, and abdominal sacrocolpopexy. J. Minim. Invasive Gynecol. 17, 493–499 (2010).

    Article  Google Scholar 

  73. Skoczylas, L. C., Turner, L. C., Wang, L., Winger, D. G. & Shepherd, J. P. Changes in prolapse surgery trends relative to FDA notifications regarding vaginal mesh. Int. Urogynecol. J. 25, 471–477 (2014).

    Article  Google Scholar 

  74. Bassaly, R. et al. Technical preferences of surgeons performing a sacrocolpopexy procedure. Surg. Technol. Int. 22, 189–194 (2012).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors made a substantial contribution to discussion of content, wrote the article and reviewed and edited the manuscript before submission. K.P.S. researched data for the article.

Corresponding author

Correspondence to Kamran P. Sajadi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajadi, K., Goldman, H. Robotic pelvic organ prolapse surgery. Nat Rev Urol 12, 216–224 (2015). https://doi.org/10.1038/nrurol.2015.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing