Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dimer asymmetry defines α-catenin interactions

Abstract

The F-actin–binding cytoskeletal protein α-catenin interacts with β-catenin–cadherin complexes and stabilizes cell-cell junctions. The β-catenin–α-catenin complex cannot bind F-actin, whereas interactions of α-catenin with the cytoskeletal protein vinculin appear to be necessary to stabilize adherens junctions. Here we report the crystal structure of nearly full-length human α-catenin at 3.7-Å resolution. α-catenin forms an asymmetric dimer where the four-helix bundle domains of each subunit engage in distinct intermolecular interactions. This results in a left handshake–like dimer, wherein the two subunits have remarkably different conformations. The crystal structure explains why dimeric α-catenin has a higher affinity for F-actin than does monomeric α-catenin, why the β-catenin–α-catenin complex does not bind F-actin, how activated vinculin links the cadherin–catenin complex to the cytoskeleton and why α-catenin but not inactive vinculin can bind F-actin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: α-catenin structure.
Figure 2: α-catenin is a dimer that resembles a left handshake.
Figure 3: Model of the α-catenin–β-catenin heterodimer based on the crystal structures of β-catenin (PDB 2Z6G, shown as a cartoon and surface, both in green), the α-catenin–β-catenin chimera (PDB 1DOW, shown as a cartoon in pink) and α-catenin subunits A (cyan) or B (gray) shown as a cartoon in a or b, respectively, and as a gray surface.
Figure 4: The F-actin–binding domain surfaces of vinculin and dimeric α-catenin are distinct.
Figure 5: Asymmetry also directs interactions of α-catenin with vinculin.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Volk, T. & Geiger, B. A 135-kd membrane protein of intercellular adherens junctions. EMBO J. 3, 2249–2260 (1984).

    Article  CAS  Google Scholar 

  2. Takeichi, M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102, 639–655 (1988).

    CAS  PubMed  Google Scholar 

  3. Nishimura, T. & Takeichi, M. Remodeling of the adherens junctions during morphogenesis. Curr. Top. Dev. Biol. 89, 33–54 (2009).

    Article  CAS  Google Scholar 

  4. Brasch, J., Harrison, O.J., Honig, B. & Shapiro, L. Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol. 22, 299–310 (2012).

    Article  CAS  Google Scholar 

  5. Hirano, S., Nose, A., Hatta, K., Kawakami, A. & Takeichi, M. Calcium-dependent cell-cell adhesion molecules (cadherins): subclass specificities and possible involvement of actin bundles. J. Cell Biol. 105, 2501–2510 (1987).

    Article  CAS  Google Scholar 

  6. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619–627 (1995).

    Article  CAS  Google Scholar 

  7. Pokutta, S. & Weis, W.I. Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu. Rev. Cell Dev. Biol. 23, 237–261 (2007).

    Article  CAS  Google Scholar 

  8. Lecuit, T. α-catenin mechanosensing for adherens junctions. Nat. Cell Biol. 12, 522–524 (2010).

    Article  CAS  Google Scholar 

  9. Miyake, Y. et al. Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Exp. Cell Res. 312, 1637–1650 (2006).

    Article  CAS  Google Scholar 

  10. Hirano, S., Kimoto, N., Shimoyama, Y., Hirohashi, S. & Takeichi, M. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 70, 293–301 (1992).

    Article  CAS  Google Scholar 

  11. Watabe, M., Nagafuchi, A., Tsukita, S. & Takeichi, M. Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin–catenin adhesion system in a dispersed carcinoma line. J. Cell Biol. 127, 247–256 (1994).

    Article  CAS  Google Scholar 

  12. Torres, M. et al. An α-E-catenin gene trap mutation defines its function in preimplantation development. Proc. Natl. Acad. Sci. USA 94, 901–906 (1997).

    Article  CAS  Google Scholar 

  13. Watabe-Uchida, M. et al. α-Catenin–vinculin interaction functions to organize the apical junctional complex in epithelial cells. J. Cell Biol. 142, 847–857 (1998).

    Article  CAS  Google Scholar 

  14. Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell 104, 605–617 (2001).

    Article  CAS  Google Scholar 

  15. Drees, F., Pokutta, S., Yamada, S., Nelson, W.J. & Weis, W.I. α-catenin is a molecular switch that binds E-cadherin-β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    Article  CAS  Google Scholar 

  16. Weis, W.I. & Nelson, W.J. Re-solving the cadherin-catenin-actin conundrum. J. Biol. Chem. 281, 35593–35597 (2006).

    Article  CAS  Google Scholar 

  17. Yamada, S., Pokutta, S., Drees, F., Weis, W.I. & Nelson, W.J. Deconstructing the cadherin-catenin-actin complex. Cell 123, 889–901 (2005).

    Article  CAS  Google Scholar 

  18. Peng, X., Cuff, L.E., Lawton, C.D. & DeMali, K.A. Vinculin regulates cell-surface E-cadherin expression by binding to β-catenin. J. Cell Sci. 123, 567–577 (2010).

    Article  CAS  Google Scholar 

  19. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12, 533–542 (2010).

    Article  CAS  Google Scholar 

  20. Rangarajan, E.S. & Izard, T. α-Catenin unfurls upon binding to vinculin. J. Biol. Chem. 287, 18492–18499 (2012).

    Article  CAS  Google Scholar 

  21. Abe, K. & Takeichi, M. EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc. Natl. Acad. Sci. USA 105, 13–19 (2008).

    Article  CAS  Google Scholar 

  22. Hazan, R.B., Kang, L., Roe, S., Borgen, P.I. & Rimm, D.L. Vinculin is associated with the E-cadherin adhesion complex. J. Biol. Chem. 272, 32448–32453 (1997).

    Article  CAS  Google Scholar 

  23. Hülsken, J., Birchmeier, W. & Behrens, J. E-cadherin and APC compete for the interaction with β-catenin and the cytoskeleton. J. Cell Biol. 127, 2061–2069 (1994).

    Article  Google Scholar 

  24. Weiss, E.E., Kroemker, M., Rudiger, A.H., Jockusch, B.M. & Rudiger, M. Vinculin is part of the cadherin-catenin junctional complex: complex formation between α-catenin and vinculin. J. Cell Biol. 141, 755–764 (1998).

    Article  CAS  Google Scholar 

  25. Tachibana, K. et al. Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J. Cell Biol. 150, 1161–1176 (2000).

    Article  CAS  Google Scholar 

  26. Shapiro, L. et al. Structural basis of cell-cell adhesion by cadherins. Nature 374, 327–337 (1995).

    Article  CAS  Google Scholar 

  27. Itoh, M., Nagafuchi, A., Moroi, S. & Tsukita, S. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to α-catenin and actin filaments. J. Cell Biol. 138, 181–192 (1997).

    Article  CAS  Google Scholar 

  28. Imamura, Y., Itoh, M., Maeno, Y., Tsukita, S. & Nagafuchi, A. Functional domains of α-catenin required for the strong state of cadherin-based cell adhesion. J. Cell Biol. 144, 1311–1322 (1999).

    Article  CAS  Google Scholar 

  29. Pokutta, S. & Weis, W.I. Structure of the dimerization and β-catenin–binding region of α-catenin. Mol. Cell 5, 533–543 (2000).

    Article  CAS  Google Scholar 

  30. Pokutta, S., Drees, F., Takai, Y., Nelson, W.J. & Weis, W.I. Biochemical and structural definition of the l-afadin- and actin-binding sites of α-catenin. J. Biol. Chem. 277, 18868–18874 (2002).

    Article  CAS  Google Scholar 

  31. Yang, J., Dokurno, P., Tonks, N.K. & Barford, D. Crystal structure of the M-fragment of α-catenin: implications for modulation of cell adhesion. EMBO J. 20, 3645–3656 (2001).

    Article  CAS  Google Scholar 

  32. Choi, H.J. et al. αE-catenin is an autoinhibited molecule that coactivates vinculin. Proc. Natl. Acad. Sci. USA 109, 8576–8581 (2012).

    Article  CAS  Google Scholar 

  33. Peng, X., Maiers, J.L., Choudhury, D., Craig, S.W. & Demali, K.A. α-Catenin uses a novel mechanism to activate vinculin. J. Biol. Chem. 287, 7728–7737 (2012).

    Article  CAS  Google Scholar 

  34. Jockusch, B.M. & Isenberg, G. Interaction of α-actinin and vinculin with actin: opposite effects on filament network formation. Proc. Natl. Acad. Sci. USA 78, 3005–3009 (1981).

    Article  CAS  Google Scholar 

  35. Wilkins, J.A. & Lin, S. High-affinity interaction of vinculin with actin filaments in vitro. Cell 28, 83–90 (1982).

    Article  CAS  Google Scholar 

  36. Johnson, R.P. & Craig, S.W. F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 373, 261–264 (1995).

    Article  CAS  Google Scholar 

  37. Weekes, J., Barry, S.T. & Critchley, D.R. Acidic phospholipids inhibit the intramolecular association between the N- and C-terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. Biochem. J. 314, 827–832 (1996).

    Article  CAS  Google Scholar 

  38. Steimle, P.A., Hoffert, J.D., Adey, N.B. & Craig, S.W. Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. J. Biol. Chem. 274, 18414–18420 (1999).

    Article  CAS  Google Scholar 

  39. Borgon, R.A., Vonrhein, C., Bricogne, G., Bois, P.R. & Izard, T. Crystal structure of human vinculin. Structure 12, 1189–1197 (2004).

    Article  CAS  Google Scholar 

  40. Rangarajan, E.S., Lee, J.H., Yogesha, S.D. & Izard, T. A helix replacement mechanism directs metavinculin functions. PLoS ONE 5, e10679 (2010).

    Article  Google Scholar 

  41. Xing, Y. et al. Crystal structure of a full-length β-catenin. Structure 16, 478–487 (2008).

    Article  CAS  Google Scholar 

  42. Pappas, D.J. & Rimm, D.L. Direct interaction of the C-terminal domain of α-catenin and F-actin is necessary for stabilized cell-cell adhesion. Cell Commun. Adhes. 13, 151–170 (2006).

    Article  Google Scholar 

  43. Johnson, R.P. & Craig, S.W. The carboxy-terminal tail domain of vinculin contains a cryptic binding site for acidic phospholipids. Biochem. Biophys. Res. Commun. 210, 159–164 (1995).

    Article  CAS  Google Scholar 

  44. Rimm, D.L., Koslov, E.R., Kebriaei, P., Cianci, C.D. & Morrow, J.S. α1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc. Natl. Acad. Sci. USA 92, 8813–8817 (1995).

    Article  CAS  Google Scholar 

  45. Knudsen, K.A., Soler, A.P., Johnson, K.R. & Wheelock, M.J. Interaction of α-actinin with the cadherin/catenin cell-cell adhesion complex via α-catenin. J. Cell Biol. 130, 67–77 (1995).

    Article  CAS  Google Scholar 

  46. Pradhan, D., Lombardo, C.R., Roe, S., Rimm, D.L. & Morrow, J.S. α-Catenin binds directly to spectrin and facilitates spectrin-membrane assembly in vivo. J. Biol. Chem. 276, 4175–4181 (2001).

    Article  CAS  Google Scholar 

  47. Kobielak, A. & Fuchs, E. α-Catenin: at the junction of intercellular adhesion and actin dynamics. Nat. Rev. Mol. Cell Biol. 5, 614–625 (2004).

    Article  CAS  Google Scholar 

  48. Nagafuchi, A., Ishihara, S. & Tsukita, S. The roles of catenins in the cadherin-mediated cell adhesion: functional analysis of E-cadherin–α-catenin fusion molecules. J. Cell Biol. 127, 235–245 (1994).

    Article  CAS  Google Scholar 

  49. Sako, Y., Nagafuchi, A., Tsukita, S., Takeichi, M. & Kusumi, A. Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J. Cell Biol. 140, 1227–1240 (1998).

    Article  CAS  Google Scholar 

  50. Pacquelet, A. & Rorth, P. Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J. Cell Biol. 170, 803–812 (2005).

    Article  CAS  Google Scholar 

  51. Chen, H., Cohen, D.M., Choudhury, D.M., Kioka, N. & Craig, S.W. Spatial distribution and functional significance of activated vinculin in living cells. J. Cell Biol. 169, 459–470 (2005).

    Article  CAS  Google Scholar 

  52. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011).

    Article  CAS  Google Scholar 

  53. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystalllogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  54. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  Google Scholar 

  55. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  PubMed  Google Scholar 

  56. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  58. Bricogne, G. et al. BUSTER version 2.9 (Global Phasing Ltd., 2011).

  59. Smart, O.S. et al. Refinement with local structure similarity restraints (LSSR) enables exploitation of information from related structures and facilitates use of NCS. Abstr. Annu. Meet. Am. Crystallogr. Assoc., Knoxville, TN, abstr. TP139 (2008).

  60. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to our colleagues at Scripps Florida: J. Cleveland for discussions and critical review of the manuscript, Z. Wu and P. Bois for sequencing and P. Bois for fruitful discussions. We thank C. Vonrhein and G. Bricogne (Global Phasing Ltd.) for analyses and helpful discussions. We are grateful to the staff at the SER-CAT (BM22) and SSRL (11-1) for synchrotron support. T.I. is supported by grants from the US National Institute of General Medical Sciences from the US National Institutes of Health (GM071596 and GM094483) and by start-up funds provided to Scripps Florida from the State of Florida. This is publication no. 21863 from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the design and interpretation of all aspects of this work. E.S.R. performed all of the experiments. T.I. wrote the manuscript.

Corresponding author

Correspondence to Tina Izard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 39296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangarajan, E., Izard, T. Dimer asymmetry defines α-catenin interactions. Nat Struct Mol Biol 20, 188–193 (2013). https://doi.org/10.1038/nsmb.2479

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2479

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing