Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Knockdown of splicing factor SRp20 causes apoptosis in ovarian cancer cells and its expression is associated with malignancy of epithelial ovarian cancer

Abstract

Our previous study revealed that two splicing factors, polypyrimidine tract-binding protein (PTB) and SRp20, were upregulated in epithelial ovarian cancer (EOC) and knockdown of PTB expression inhibited ovarian tumor cell growth and transformation properties. In this report, we show that knockdown of SRp20 expression in ovarian cancer cells also causes substantial inhibition of tumor cell growth and colony formation in soft agar and the extent of such inhibition appeared to correlate with the extent of suppression of SRp20. Massive knockdown of SRp20 expression triggered remarkable apoptosis in these cells. These results suggest that overexpression of SRp20 is required for ovarian tumor cell growth and survival. Immunohistochemical staining for PTB and SRp20 of two specialized tissue microarrays, one containing benign ovarian tumors, borderline/low malignant potential (LMP) ovarian tumors as well as invasive EOC and the other containing invasive EOC ranging from stage I to stage IV disease, reveals that PTB and SRp20 are both expressed differentially between benign tumors and invasive EOC, and between borderline/LMP tumors and invasive EOC. There were more all-negative or mixed staining cases (at least two evaluable section cores per case) in benign tumors than in invasive EOC, whereas there were more all-positive staining cases in invasive EOC than in the other two disease classifications. Among invasive EOC, the majority of cases were stained all positive for both PTB and SRp20, and there were no significant differences in average staining or frequency of positive cancer cells between any of the tumor stages. Therefore, the expression of PTB and SRp20 is associated with malignancy of ovarian tumors but not with stage of invasive EOC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bartel F, Taubert H, Harris LC . (2002). Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2: 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Black DL . (2003). Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72: 291–336.

    Article  CAS  PubMed  Google Scholar 

  • Caceres JF, Kornblihtt AR . (2002). Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 18: 186–193.

    Article  CAS  PubMed  Google Scholar 

  • Castelo-Branco P, Furger A, Wollerton M, Smith C, Moreira A, Proudfoot N . (2004). Polypyrimidine tract binding protein modulates efficiency of polyadenylation. Mol Cell Biol 24: 4174–4183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelis S, Tinton SA, Schepens B, Bruynooghe Y, Beyaert R . (2005). UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein. Nucleic Acids Res 33: 3095–3108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cote CA, Gautreau D, Denegre JM, Kress TL, Terry NA, Mowry KL . (1999). A Xenopus protein related to hnRNP I has a role in cytoplasmic RNA localization. Mol Cell 4: 431–437.

    Article  CAS  PubMed  Google Scholar 

  • de la Mata M, Kornblihtt AR . (2006). RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 13: 973–980.

    Article  CAS  PubMed  Google Scholar 

  • De Marzo AM, Bradshaw C, Sauvageot J, Epstein JI, Miller GJ . (1998). CD44 and CD44v6 downregulation in clinical prostatic carcinoma: relation to Gleason grade and cytoarchitecture. Prostate 34: 162–168.

    Article  CAS  PubMed  Google Scholar 

  • Feltes CM, Kudo A, Blaschuk O, Byers SW . (2002). An alternatively spliced cadherin-11 enhances human breast cancer cell invasion. Cancer Res 62: 6688–6697.

    CAS  PubMed  Google Scholar 

  • Fisher RA . (1922). On the interpretation of χ2 from contingency tables, and the calculation of P. J R Stat Soc 85: 87–94.

    Article  Google Scholar 

  • Galiana-Arnoux D, Lejeune F, Gesnel MC, Stevenin J, Breathnach R, Del Gatto-Konczak F . (2003). The CD44 alternative v9 exon contains a splicing enhancer responsive to the SR proteins 9G8, ASF/SF2, and SRp20. J Biol Chem 278: 32943–32953.

    Article  CAS  PubMed  Google Scholar 

  • Graveley BR . (2000). Sorting out the complexity of SR protein functions. RNA 6: 1197–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I et al. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton BJ, Genin A, Cron RQ, Rigby WF . (2003). Delineation of a novel pathway that regulates CD154 (CD40 ligand) expression. Mol Cell Biol 23: 510–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Ee PL, Coon JS, Beck WT . (2004). Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. Clin Cancer Res 10: 4652–4660.

    Article  CAS  PubMed  Google Scholar 

  • He X, Pool M, Darcy KM, Lim SB, Auersperg N, Coon JS et al. (2007). Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene 26: 4961–4968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Steitz JA . (2001). Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell 7: 899–905.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . (2009). Cancer statistics, 2009. CA Cancer J Clin 59: 225–249.

    Article  PubMed  Google Scholar 

  • Jin W, Bruno IG, Xie TX, Sanger LJ, Cote GJ . (2003). Polypyrimidine tract-binding protein down-regulates fibroblast growth factor receptor 1 alpha-exon inclusion. Cancer Res 63: 6154–6157.

    CAS  PubMed  Google Scholar 

  • Jin W, McCutcheon IE, Fuller GN, Huang ES, Cote GJ . (2000). Fibroblast growth factor receptor-1 alpha-exon exclusion and polypyrimidine tract-binding protein in glioblastoma multiforme tumors. Cancer Res 60: 1221–1224.

    CAS  PubMed  Google Scholar 

  • Jumaa H, Nielsen PJ . (2000). Regulation of SRp20 exon 4 splicing. Biochim Biophys Acta 1494: 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Jumaa H, Wei G, Nielsen PJ . (1999). Blastocyst formation is blocked in mouse embryos lacking the splicing factor SRp20. Curr Biol 9: 899–902.

    Article  CAS  PubMed  Google Scholar 

  • Jurica MS, Moore MJ . (2003). Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12: 5–14.

    Article  CAS  PubMed  Google Scholar 

  • Knoch KP, Bergert H, Borgonovo B, Saeger HD, Altkruger A, Verkade P et al. (2004). Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nat Cell Biol 6: 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Konig H, Ponta H, Herrlich P . (1998). Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J 17: 2904–2913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosinski PA, Laughlin J, Singh K, Covey LR . (2003). A complex containing polypyrimidine tract-binding protein is involved in regulating the stability of CD40 ligand (CD154) mRNA. J Immunol 170: 979–988.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yuan J . (2008). Caspases in apoptosis and beyond. Oncogene 27: 6194–6206.

    Article  CAS  PubMed  Google Scholar 

  • Loomis RJ, Naoe Y, Parker JB, Savic V, Bozovsky MR, Macfarlan T et al. (2009). Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol Cell 33: 450–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou H, Helfman DM, Gagel RF, Berget SM . (1999). Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3′-terminal exon. Mol Cell Biol 19: 78–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou H, Neugebauer KM, Gagel RF, Berget SM . (1998). Regulation of alternative polyadenylation by U1 snRNPs and SRp20. Mol Cell Biol 18: 4977–4985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukas J, Gao DQ, Keshmeshian M, Wen WH, Tsao-Wei D, Rosenberg S et al. (2001). Alternative and aberrant messenger RNA splicing of the mdm2 oncogene in invasive breast cancer. Cancer Res 61: 3212–3219.

    CAS  PubMed  Google Scholar 

  • Matlin AJ, Clark F, Smith CW . (2005). Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6: 386–398.

    Article  CAS  PubMed  Google Scholar 

  • Matter N, Marx M, Weg-Remers S, Ponta H, Herrlich P, Konig H . (2000). Heterogeneous ribonucleoprotein A1 is part of an exon-specific splice-silencing complex controlled by oncogenic signaling pathways. J Biol Chem 275: 35353–35360.

    Article  CAS  PubMed  Google Scholar 

  • Mehta CR, Patel NR . (1983). A network algorithm for performing Fisher's exact test in r × c contingency tables. JAm Stat Assoc 78: 427–434.

    Google Scholar 

  • Mitchell SA, Brown EC, Coldwell MJ, Jackson RJ, Willis AE . (2001). Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mol Cell Biol 21: 3364–3374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persengiev SP, Zhu X, Green MR . (2004). Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10: 12–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ries LAG, Melbert D, Krapcho M, Mariotto A, Miller BA, Feuer EJ et al. (2007). SEER Cancer Statistics Review, 1975–2004, National Cancer Institute: Bethesda, MD.

    Google Scholar 

  • Sanchez Lockhart M, Hajos SE, Basilio FM, Mongini C, Alvarez E . (2001). Splice variant expression of CD44 in patients with breast and ovarian cancer. Oncol Rep 8: 145–151.

    CAS  PubMed  Google Scholar 

  • Schroder W, Rudlowski C, Biesterfeld S, Knobloch C, Hauptmann S, Rath W . (1999). Expression of CD44(v5-10) splicing variants in primary ovarian cancer and lymph node metastases. Anticancer Res 19: 3901–3906.

    CAS  PubMed  Google Scholar 

  • Sen S, Talukdar I, Webster NJ . (2009). SRp20 and CUG-BP1 modulate insulin receptor exon 11 alternative splicing. Mol Cell Biol 29: 871–880.

    Article  CAS  PubMed  Google Scholar 

  • Silberstein GB, Van Horn K, Strickland P, Roberts Jr CT, Daniel CW . (1997). Altered expression of the WT1 wilms tumor suppressor gene in human breast cancer. Proc Natl Acad Sci USA 94: 8132–8137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stickeler E, Kittrell F, Medina D, Berget SM . (1999). Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene 18: 3574–3582.

    Article  CAS  PubMed  Google Scholar 

  • Stoilov P, Meshorer E, Gencheva M, Glick D, Soreq H, Stamm S . (2002). Defects in Pre-mRNA processing as causes of and predisposition to diseases. DNA Cell Biol 21: 803–818.

    Article  CAS  PubMed  Google Scholar 

  • Venables JP . (2004). Aberrant and alternative splicing in cancer. Cancer Res 64: 7647–7654.

    Article  CAS  PubMed  Google Scholar 

  • Wagner EJ, Garcia-Blanco MA . (2001). Polypyrimidine tract binding protein antagonizes exon definition. Mol Cell Biol 21: 3281–3288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Lo HS, Yang H, Gere S, Hu Y, Buetow KH et al. (2003). Computational analysis and experimental validation of tumor-associated alternative RNA splicing in human cancer. Cancer Res 63: 655–657.

    CAS  PubMed  Google Scholar 

  • Watermann DO, Tang Y, Zur Hausen A, Jager M, Stamm S, Stickeler E . (2006). Splicing factor Tra2-beta1 is specifically induced in breast cancer and regulates alternative splicing of the CD44 gene. Cancer Res 66: 4774–4780.

    Article  CAS  PubMed  Google Scholar 

  • Weg-Remers S, Ponta H, Herrlich P, Konig H . (2001). Regulation of alternative pre-mRNA splicing by the ERK MAP-kinase pathway. EMBO J 20: 4194–4203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wielenga VJ, Heider KH, Offerhaus GJ, Adolf GR, van den Berg FM, Ponta H et al. (1993). Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res 53: 4754–4756.

    CAS  PubMed  Google Scholar 

  • Wiznerowicz M, Trono D . (2003). Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77: 8957–8961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Lee JA, Kress TL, Mowry KL, Black DL . (2003). Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein. Proc Natl Acad Sci USA 100: 8776–8781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Lee C . (2003). Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences. Nucleic Acids Res 31: 5635–5643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youle RJ, Strasser A . (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47–59.

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Guo J, Zhou J . (2004). A minimal length between tau exon 10 and 11 is required for correct splicing of exon 10. J Neurochem 90: 164–172.

    Article  CAS  PubMed  Google Scholar 

  • Zang WQ, Li B, Huang PY, Lai MM, Yen TS . (2001). Role of polypyrimidine tract binding protein in the function of the hepatitis B virus posttranscriptional regulatory element. J Virol 75: 10779–10786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Gynecologic Oncology Group (GOG) Tissue Bank for providing unstained ovarian tumor TMAs. We thank our colleague, Martina Vaskova, for her outstanding administrative assistance. We also thank Dr Richard Gemeinhart for allowing us to use his IX70 microscope and Ernest Gemeinhart for his excellent technical assistance with microscopy. This work was supported by the National Cancer Institute Grants CA40570 and CA138762 to WTB, CA27469 to the GOG, GOG Tissue Bank and GOG Molecular Pharmacology Core Lab and CA37517 to the GOG Statistical and Data Center as well as the Ovarian Cancer Research Fund (XH), Rush University Medical Center and the University of Illinois at Chicago. It was conducted in a facility constructed with support from the NCRR NIH grant C06RR15482.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X He or W T Beck.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Arslan, A., Pool, M. et al. Knockdown of splicing factor SRp20 causes apoptosis in ovarian cancer cells and its expression is associated with malignancy of epithelial ovarian cancer. Oncogene 30, 356–365 (2011). https://doi.org/10.1038/onc.2010.426

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.426

Keywords

This article is cited by

Search

Quick links