Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peripheral inflammatory biomarkers define biotypes of bipolar depression

Abstract

We identified biologically relevant moderators of response to tumor necrosis factor (TNF)-α inhibitor, infliximab, among 60 individuals with bipolar depression. Data were derived from a 12-week, randomized, placebo-controlled clinical trial secondarily evaluating the efficacy of infliximab on a measure of anhedonia (i.e., Snaith–Hamilton Pleasure Scale). Three inflammatory biotypes were derived from peripheral cytokine measurements using an iterative, machine learning-based approach. Infliximab-randomized participants classified as biotype 3 exhibited lower baseline concentrations of pro- and anti-inflammatory cytokines and soluble TNF receptor-1 and reported greater pro-hedonic improvements, relative to those classified as biotype 1 or 2. Pretreatment biotypes also moderated changes in neuroinflammatory substrates relevant to infliximab’s hypothesized mechanism of action. Neuronal origin-enriched extracellular vesicle (NEV) protein concentrations were reduced to two factors using principal axis factoring: phosphorylated nuclear factorκB (p-NFκB), Fas-associated death domain (p-FADD), and IκB kinase (p-IKKα/β) and TNF receptor-1 (TNFR1) comprised factor “NEV1,” whereas phosphorylated insulin receptor substrate-1 (p-IRS1), p38 mitogen-activated protein kinase (p-p38), and c-Jun N-terminal kinase (p-JNK) constituted “NEV2”. Among infliximab-randomized subjects classified as biotype 3, NEV1 scores were decreased at weeks 2 and 6 and increased at week 12, relative to baseline, and NEV2 scores increased over time. Decreases in NEV1 scores and increases in NEV2 scores were associated with greater reductions in anhedonic symptoms in our classification and regression tree model (r2 = 0.22, RMSE = 0.08). Our findings provide preliminary evidence supporting the hypothesis that the pro-hedonic effects of infliximab require modulation of multiple TNF-α signaling pathways, including NF-κB, IRS1, and MAPK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: We used an iterative, machine learning-based approach to investigate peripheral markers of inflammatory activation relevant to infliximab’s hypothesized mechanism of action.
Fig. 2: Hypothesized mechanism of action of infliximab in bipolar depression.

Similar content being viewed by others

References

  1. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–17. https://doi.org/10.1176/ajp.2006.163.11.1905.

    Article  PubMed  Google Scholar 

  2. Fava M, Rush AJ, Wisniewski SR, Nierenberg AA, Alpert JE, McGrath PJ, et al. A comparison of mirtazapine and nortriptyline following two consecutive failed medication treatments for depressed outpatients: a STAR*D report. Am J Psychiatry. 2006;163:1161–72. https://doi.org/10.1176/appi.ajp.163.7.1161.

    Article  PubMed  Google Scholar 

  3. Insel TR, Cuthbert BN. Medicine. Brain disorders? Precisely. Sci. 2015;348:499–500. https://doi.org/10.1126/science.aab2358.

    Article  CAS  Google Scholar 

  4. Trivedi MH, Morris DW, Wisniewski SR, Lesser I, Nierenberg AA, Daly E, et al. Increase in work productivity of depressed individuals with improvement in depressive symptom severity. Am J Psychiatry. 2013;170:633–41. https://doi.org/10.1176/appi.ajp.2012.12020250.

    Article  PubMed  Google Scholar 

  5. Webb CA, Trivedi MH, Cohen ZD, Dillon DG, Fournier JC, Goer F, et al. Personalized prediction of antidepressant v. placebo response: evidence from the EMBARC study. Psychol Med. 2019;49:1118–27. https://doi.org/10.1017/S0033291718001708.

    Article  PubMed  Google Scholar 

  6. Lee Y, Ragguett R-M, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519–32. https://doi.org/10.1016/j.jad.2018.08.073.

    Article  PubMed  Google Scholar 

  7. Strawbridge R, Arnone D, Danese A, Papadopoulos A, Herane Vives A, Cleare AJ. Inflammation and clinical response to treatment in depression: a meta-analysis. Eur Neuropsychopharmacol. 2015;25:1532–43. https://doi.org/10.1016/j.euroneuro.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  8. Benedetti F, Poletti S, Hoogenboezem TA, Locatelli C, de Wit H, Wijkhuijs AJM, et al. Higher baseline proinflammatory cytokines mark poor antidepressant response in bipolar disorder. J Clin Psychiatry. 2017;78:e986–93. https://doi.org/10.4088/JCP.16m11310.

    Article  PubMed  Google Scholar 

  9. Arteaga-Henríquez G, Simon MS, Burger B, Weidinger E, Wijkhuijs A, Arolt V, et al. Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in MDD patients: a systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOODINFLAME Consortium. Front Psychiatry. 2019;10:458. https://doi.org/10.3389/fpsyt.2019.00458.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34. https://doi.org/10.1038/nri.2015.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosenblat JD, Kakar R, Berk M, Kessing LV, Vinberg M, Baune BT, et al. Anti-inflammatory agents in the treatment of bipolar depression: a systematic review and meta-analysis. Bipolar Disord. 2016;18:89–101. https://doi.org/10.1111/bdi.12373.

    Article  CAS  PubMed  Google Scholar 

  12. Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018;23:335–43. https://doi.org/10.1038/mp.2016.167.

    Article  CAS  PubMed  Google Scholar 

  13. McIntyre RS, Subramaniapillai M, Lee Y, Pan Z, Carmona NE, Shekotikhina M, et al. Efficacy of adjunctive infliximab vs placebo in the treatment of adults with bipolar I/II depression: a randomized clinical trial. JAMA Psychiatry. 2019;76:783–90. https://doi.org/10.1001/jamapsychiatry.2019.0779.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee Y, Mansur RB, Brietzke E, Carmona NE, Subramaniapillai M, Pan Z, et al. Efficacy of adjunctive infliximab vs. placebo in the treatment of anhedonia in bipolar I/II depression. Brain Behav Immun. 2020. https://doi.org/10.1016/j.bbi.2020.04.063.

  15. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70:31–41. https://doi.org/10.1001/2013.jamapsychiatry.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andersson KME, Wasén C, Juzokaite L, Leifsdottir L, Erlandsson MC, Silfverswärd ST, et al. Inflammation in the hippocampus affects IGF1 receptor signaling and contributes to neurological sequelae in rheumatoid arthritis. Proc Natl Acad Sci USA. 2018;115:E12063–72. https://doi.org/10.1073/pnas.1810553115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kleinridders A, Cai W, Cappellucci L, Ghazarian A, Collins WR, Vienberg SG, et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci USA. 2015;112:3463–8. https://doi.org/10.1073/pnas.1500877112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nasca C, Dobbin J, Bigio B, Watson K, de Angelis P, Kautz M, et al. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-0804-7.

  19. Millett CE, Harder J, Locascio JJ, Shanahan M, Santone G, Fichorova RN, et al. TNF-α and its soluble receptors mediate the relationship between prior severe mood episodes and cognitive dysfunction in euthymic bipolar disorder. Brain Behav Immun. 2020. https://doi.org/10.1016/j.bbi.2020.04.003.

  20. Haroon E, Welle JR, Woolwine BJ, Goldsmith DR, Baer W, Patel T, et al. Associations among peripheral and central kynurenine pathway metabolites and inflammation in depression. Neuropsychopharmacology. 2020;45:998–1007. https://doi.org/10.1038/s41386-020-0607-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun. 2020;87:901–9. https://doi.org/10.1016/j.bbi.2020.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Husain M, Roiser JP. Neuroscience of apathy and anhedonia: a transdiagnostic approach. Nat Rev Neurosci. 2018;19:470–84. https://doi.org/10.1038/s41583-018-0029-9.

    Article  CAS  PubMed  Google Scholar 

  23. Lee Y, Subramaniapillai M, Brietzke E, Mansur RB, Ho RC, Yim SJ, et al. Anti-cytokine agents for anhedonia: targeting inflammation and the immune system to treat dimensional disturbances in depression. Ther Adv Psychopharmacol. 2018;8:337–48. https://doi.org/10.1177/2045125318791944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Snaith RP, Hamilton M, Morley S, Humayan A, Hargreaves D, Trigwell P. A scale for the assessment of hedonic tone the Snaith-Hamilton Pleasure Scale. Br J Psychiatry. 1995;167:99–103. https://doi.org/10.1192/bjp.167.1.99.

    Article  CAS  PubMed  Google Scholar 

  25. Leventhal AM, Chasson GS, Tapia E, Miller EK, Pettit JW. Measuring hedonic capacity in depression: a psychometric analysis of three anhedonia scales. J Clin Psychol. 2006;62:1545–58. https://doi.org/10.1002/jclp.20327.

    Article  PubMed  Google Scholar 

  26. Kramer NE, Cosgrove VE, Dunlap K, Subramaniapillai M, McIntyre RS, Suppes T. A clinical model for identifying an inflammatory phenotype in mood disorders. J Psychiatr Res. 2019;113:148–58. https://doi.org/10.1016/j.jpsychires.2019.02.005.

    Article  PubMed  Google Scholar 

  27. Mustapic M, Eitan E, Werner JK Jr, Berkowitz ST, Lazaropoulos MP, Tran J, et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci. 2017;11:278. https://doi.org/10.3389/fnins.2017.00278.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mullins RJ, Mustapic M, Goetzl EJ, Kapogiannis D. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer’s disease. Hum Brain Mapp. 2017;38:1933–40. https://doi.org/10.1002/hbm.23494.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, et al. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with parkinson disease: a secondary analysis of the exenatide-PD trial. JAMA Neurol. 2019;76:420–9. https://doi.org/10.1001/jamaneurol.2018.4304.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sáenz-Cuesta M, Arbelaiz A, Oregi A, Irizar H, Osorio-Querejeta I, Muñoz-Culla M, et al. Methods for extracellular vesicles isolation in a hospital setting. Front Immunol. 2015;6:50. https://doi.org/10.3389/fimmu.2015.00050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mansur RB, Delgado-Peraza F, Subramaniapillai M, Lee Y, Iacobucci M, Rodrigues N, et al. Extracellular vesicle biomarkers reveal inhibition of neuroinflammation by infliximab in association with antidepressant response in adults with bipolar depression. Cells. 2020;9. https://doi.org/10.3390/cells9040895.

  32. Breiman L. Classification and regression trees. Boca Raton: Routledge; 2017.

  33. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 2012;13:281–305. http://www.jmlr.org/papers/v13/bergstra12a.html.

    Google Scholar 

  34. Shmueli G. To explain or to predict? Stat Sci. 2010;25:289–310. https://projecteuclid.org/euclid.ss/1294167961.

    Article  Google Scholar 

  35. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. https://www.R-project.org/.

  36. Revelle W. psych: procedures for psychological, psychometric, and personality research. Evanston, Illinois: Northwestern University; 2019. https://CRAN.R-project.org/package=psych.

  37. Hennig C. fpc: flexible procedures for clustering. 2019. https://CRAN.R-project.org/package=fpc.

  38. Hennig C. Cluster-wise assessment of cluster stability. Comput Stat Data Anal. 2007;52:258–71. http://www.sciencedirect.com/science/article/pii/S0167947306004622.

    Article  Google Scholar 

  39. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  40. Chen G, Bhojani MS, Heaford AC, Chang DC, Laxman B, Thomas DG, et al. Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas. Proc Natl Acad Sci USA. 2005;102:12507–12. https://doi.org/10.1073/pnas.0500397102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lawrence T, Bebien M, Liu GY, Nizet V, Karin M. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature. 2005;434:1138–43. https://doi.org/10.1038/nature03491.

    Article  CAS  PubMed  Google Scholar 

  42. Christian F, Smith EL, Carmody RJ. The regulation of NF-κB subunits by phosphorylation. Cells. 2016;5. https://doi.org/10.3390/cells5010012.

  43. Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69. https://doi.org/10.1038/nrn2038.

    Article  CAS  PubMed  Google Scholar 

  44. Barger SW, Hörster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci USA. 1995;92:9328–32. https://doi.org/10.1073/pnas.92.20.9328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fenn AM, Henry CJ, Huang Y, Dugan A, Godbout JP. Lipopolysaccharide-induced interleukin (IL)-4 receptor-α expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav Immun. 2012;26:766–77. https://doi.org/10.1016/j.bbi.2011.10.003.

    Article  CAS  PubMed  Google Scholar 

  46. Mehta D, Raison CL, Woolwine BJ, Haroon E, Binder EB, Miller AH, et al. Transcriptional signatures related to glucose and lipid metabolism predict treatment response to the tumor necrosis factor antagonist infliximab in patients with treatment-resistant depression. Brain Behav Immun. 2013;31:205–15. https://doi.org/10.1016/j.bbi.2013.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lügering A, Schmidt M, Lügering N, Pauels HG, Domschke W, Kucharzik T. Infliximab induces apoptosis in monocytes from patients with chronic active Crohn’s disease by using a caspase-dependent pathway. Gastroenterology. 2001;121:1145–57. https://doi.org/10.1053/gast.2001.28702.

    Article  PubMed  Google Scholar 

  48. Chaudhari U, Romano P, Mulcahy LD, Dooley LT, Baker DG, Gottlieb AB. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet. 2001;357:1842–7. https://doi.org/10.1016/s0140-6736(00)04954-0.

    Article  CAS  PubMed  Google Scholar 

  49. Horiuchi T, Mitoma H, Harashima S-I, Tsukamoto H, Shimoda T. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology. 2010;49:1215–28. https://doi.org/10.1093/rheumatology/keq031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mitoma H, Horiuchi T, Hatta N, Tsukamoto H, Harashima S-I, Kikuchi Y, et al. Infliximab induces potent anti-inflammatory responses by outside-to-inside signals through transmembrane TNF-alpha. Gastroenterology. 2005;128:376–92. https://doi.org/10.1053/j.gastro.2004.11.060.

    Article  CAS  PubMed  Google Scholar 

  51. Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muià C, Esposito E, et al. TNF-alpha blockage in a mouse model of SCI: evidence for improved outcome. Shock. 2008;29:32–41. https://doi.org/10.1097/shk.0b013e318059053a.

    Article  CAS  PubMed  Google Scholar 

  52. Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene. 2006;25:6706–16. https://doi.org/10.1038/sj.onc.1209933.

    Article  CAS  PubMed  Google Scholar 

  53. Lügering A, Lebiedz P, Koch S, Kucharzik T. Apoptosis as a therapeutic tool in IBD? Ann NY Acad Sci. 2006;1072:62–77. https://doi.org/10.1196/annals.1326.013.

    Article  CAS  PubMed  Google Scholar 

  54. Nikolaus S, Raedler A, Kühbacker T, Sfikas N, Fölsch UR, Schreiber S. Mechanisms in failure of infliximab for Crohn’s disease. Lancet. 2000;356:1475–9. https://doi.org/10.1016/s0140-6736(00)02871-3.

    Article  CAS  PubMed  Google Scholar 

  55. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271:665–8. https://doi.org/10.1126/science.271.5249.665.

    Article  CAS  PubMed  Google Scholar 

  56. Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA. Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by Serine 312 phosphorylation. J Biol Chem. 2003;278:8199–211. https://doi.org/10.1074/jbc.M209153200.

    Article  CAS  PubMed  Google Scholar 

  57. Stagakis I, Bertsias G, Karvounaris S, Kavousanaki M, Virla D, Raptopoulou A, et al. Anti-tumor necrosis factor therapy improves insulin resistance, beta cell function and insulin signaling in active rheumatoid arthritis patients with high insulin resistance. Arthritis Res Ther. 2012;14:R141 https://doi.org/10.1186/ar3874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hançer NJ, Qiu W, Cherella C, Li Y, Copps KD, White MF. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J Biol Chem. 2014;289:12467–84. https://doi.org/10.1074/jbc.M114.554162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ho RCM, Chua AC, Tran BX, Choo CC, Husain SF, Vu GT, et al. Factors associated with the risk of developing coronary artery disease in medicated patients with major depressive disorder. Int J Environ Res Public Health. 2018;15. https://doi.org/10.3390/ijerph15102073.

  60. Goldstein BI, Carnethon MR, Matthews KA, McIntyre RS, Miller GE, Raghuveer G, et al. Major depressive disorder and bipolar disorder predispose youth to accelerated atherosclerosis and early cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2015;132:965–86. https://doi.org/10.1161/CIR.0000000000000229.

    Article  PubMed  Google Scholar 

  61. Rosenstiel P, Agnholt J, Kelsen J, Medici V, Waetzig GH, Seegert D, et al. Differential modulation of p38 mitogen activated protein kinase and STAT3 signalling pathways by infliximab and etanercept in intestinal T cells from patients with Crohn’s disease. Gut. 2005;54:314–5. https://www.ncbi.nlm.nih.gov/pubmed/15647208.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Waetzig GH, Seegert D, Rosenstiel P, Nikolaus S, Schreiber S. p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol. 2002;168:5342–51. https://doi.org/10.4049/jimmunol.168.10.5342.

    Article  CAS  PubMed  Google Scholar 

  63. Waetzig GH, Rosenstiel P, Nikolaus S, Seegert D, Schreiber S. Differential p38 mitogen-activated protein kinase target phosphorylation in responders and nonresponders to infliximab. Gastroenterology. 2003;125:633–4. https://doi.org/10.1016/s0016-5085(03)00979-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Stanley Medical Research Institute (Grant 13T-012 to RSM and TS). This research was supported in part by the Intramural Research Program of the National Institute on Aging, NIH (authors DK, FDP, SC, CNO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yena Lee.

Ethics declarations

Conflict of interest

RSM has received research grant support from the Stanley Medical Research Institute and the Canadian Institutes of Health Research/Global Alliance for Chronic Diseases/National Natural Science Foundation of China and speaker/consultation fees from Lundbeck, Janssen, Shire, Purdue, Pfizer, Otsuka, Allergan, Takeda, Neurocrine, Sunovion, and Minerva within the past 36 months. EB has been supported by Faculty of Health Sciences, Queen’s University and received honoraria as speaker/member of advisory board from Daiichi-Sankyo not related to the content of this study. JDR has received research grant support from the University of Toronto, Canadian Cancer Society, Canadian Psychiatric Association, American Psychiatric Association, American Society of Psychopharmacology (New Investigator Award), University Health Network Centre for Mental Health, Joseph M. West Family Memorial Fund and Timeposters Fellowship and industry funding for speaker/consultation/research fees from Allergan, Lundbeck and COMPASS; and is the medical director of a private clinic providing off-label ketamine infusions for depression. BIG receives grant or research support from the Brain and Behavior Research Foundation (NARSAD), Brain Canada, the Canadian Institutes of Health Research, the Heart and Stroke Foundation, National Institute of Mental Health, the Ontario Ministry of Research and Innovation, and the Departments of Psychiatry of Sunnybrook Health Sciences Centre and the University of Toronto. MV has received consultancy fees from Lundbeck, Sunovion, and Janssen/Cilag within the last 3 years. All other authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Mansur, R.B., Brietzke, E. et al. Peripheral inflammatory biomarkers define biotypes of bipolar depression. Mol Psychiatry 26, 3395–3406 (2021). https://doi.org/10.1038/s41380-021-01051-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01051-y

This article is cited by

Search

Quick links