Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo

Abstract

Although there is a strong correlation between multinucleated cells (MNCs) and cancer chemo-resistance in variety of cancers, our understanding of how multinucleated cells modulate the tumor micro-environment is limited. We captured multinucleated cells from triple-negative chemo-resistant breast cancers cells in a time frame, where they do not proliferate but rather significantly regulate their micro-environment. We show that oxidatively stressed MNCs induce chemo-resistance in vitro and in vivo by secreting VEGF and MIF. These factors act through the RAS/MAPK pathway to induce chemo-resistance by upregulating anti-apoptotic proteins. In MNCs, elevated reactive oxygen species (ROS) stabilizes HIF-1α contributing to increase production of VEGF and MIF. Together the data indicate, that the ROS-HIF-1α signaling axis is very crucial in regulation of chemo-resistance by MNCs. Targeting ROS-HIF-1α in future may help to abrogate drug resistance in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vignery A. Macrophage fusion the making of osteoclasts and giant cells. J Exp Med. 2005;202:337–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Most J, Spotl L, Mayr G, Gasser A, Sarti A, Dierich MP. Formation of multinucleated giant cells in vitro is dependent on the stage of monocyte to macrophage maturation. Blood . 1997;89:662–71.

    PubMed  CAS  Google Scholar 

  3. Bar-Shavit Z. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem. 2007;102:1130–9.

    Article  PubMed  CAS  Google Scholar 

  4. Mosieniak G, Sikora E. Polyploidy: the link between senescence and cancer. Curr Pharm Des. 2010;16:734–40.

    Article  PubMed  CAS  Google Scholar 

  5. Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol. 2004;5:45–54.

    Article  PubMed  CAS  Google Scholar 

  6. da Costa CET, Annels NE, Faaij CMJM, Forsyth RG, Hogendoorn PCW, Egeler RM. Presence of osteoclast-like multinucleated giant cells in the bone and nonostotic lesions of Langerhans cell histiocytosis. J Exp Med. 2005;201:687–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Liu B, Yu SF, Li TJ. Multinucleated giant cells in various forms of giant cell containing lesions of the jaws express features of osteoclasts. J Oral Pathol Med. 2003;32:367–75.

    Article  PubMed  Google Scholar 

  8. Zhang WH, Lin QT, Ramoth AJ, Fan D, Fidler IJ. Formation of solid tumors by a single multinucleated cancer cell. Cancer. 2011;117:4092–9.

    Article  Google Scholar 

  9. Blajeski AL, Kottke TJ, Kaufmann SH. A multistep model for paclitaxel-induced apoptosis in human breast cancer cell lines. Exp Cell Res. 2001;270:277–88.

    Article  PubMed  CAS  Google Scholar 

  10. Sharma S, Zeng JY, Zhuang CM, Zhou YQ, Yao HP, Hu X, et al. Small-molecule inhibitor BMS-777607 induces breast cancer cell polyploidy with increased resistance to cytotoxic chemotherapy agents. Mol Cancer Ther. 2013;12:725–36.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang S, Mercado-Uribe I, Liu J. Tumor stroma and differentiated cancer cells can be originated directly from polyploid giant cancer cells induced by paclitaxel. Int J Cancer. 2014;134:508–18.

    Article  PubMed  CAS  Google Scholar 

  12. Sliwinska MA, Mosieniak G, Wolanin K, Babik A, Piwocka K, Magalska A, et al. Induction of senescence with doxorubicin leads to increased genomic instability of HCT116 cells. Mech Ageing Dev. 2009;130:24–32.

    Article  PubMed  CAS  Google Scholar 

  13. Fishback NF, Travis WD, Moran C, Guinee D Jr, McCarthy W, Koss M. Pleomorphic (spindle/giant cell) carcinoma of the lung. Cancer. 1994;73:2936–45.

    Article  PubMed  CAS  Google Scholar 

  14. Puig P-E, Guilly M-N, Bouchot A, Droin N, Cathelin D, Bouyer F, et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int. 2008;32:1031–43.

    Article  PubMed  CAS  Google Scholar 

  15. Ryska A, Reynolds C, Keeney GL. Benign tumors of the breast with multinucleated stromal giant cells. Immunohistochemical analysis of six cases and review of the literature. Virchows Arch. 2001;439:768–75.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene . 2014;33:116–28.

    Article  PubMed  CAS  Google Scholar 

  17. Ogden A, Rida PCG, Knudsen BS, Kucuk O, Aneja R. Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse. Cancer Lett. 2015;367:89–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mosieniak G, Sliwinska MA, Alster O, Strzeszewska A, Sunderland P, Piechota M, et al. Polyploidy formation in doxorubicin-treated cancer cells can favor escape from senescence. Neoplasia. 2015;17:882–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Rohnalter V, Roth K, Finkernagel F, Adhikary T, Obert J, Dorzweiler K, et al. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget. 2015;6:40005–25.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuo C-H, Lu Y-C, Tseng Y-S, Shi C-S, Chen S-H, Chen P-T, et al. Reversine induces cell cycle arrest, polyploidy, and apoptosis in human breast cancer cells. Breast Cancer. 2014;21:358–69.

    Article  PubMed  Google Scholar 

  21. Lu YC, Lee YR, Liao JD, Lin CY, Chen YY, Chen PT, et al. Reversine induced multinucleated cells, cell apoptosis and autophagy in human non-small cell lung cancer cells. PLoS One. 2016;11:e0158587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Balsas P, Galán-Malo P, Marzo I, Naval J. Bortezomib resistance in a myeloma cell line is associated to PSMβ5 overexpression and polyploidy. Leuk Res. 2012;36:212–8.

    Article  PubMed  CAS  Google Scholar 

  23. Carloni V, Mazzocca A, Mello T, Galli A, Capaccioli S. Cell fusion promotes chemoresistance in metastatic colon carcinoma. Oncogene. 2013;32:2649–60.

    Article  PubMed  CAS  Google Scholar 

  24. Krajcovic M, Johnson NB, Sun Q, Normand G, Hoover N, Yao E, et al. A non-genetic route to aneuploidy in human cancers. Nat Cell Biol. 2011;13:324–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Holt DJ, Grainger DW. Multinucleated giant cells from fibroblast cultures. Biomaterials . 2011;32:3977–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lee HO, Davidson JM, Duronio RJ. Endoreplication: polyploidy with purpose. Gene Dev. 2009;23:2461–77.

    Article  PubMed  CAS  Google Scholar 

  27. Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 2008;15:1153–62.

    Article  PubMed  CAS  Google Scholar 

  28. Leikam C, Hufnagel A, Schartl M, Meierjohann S. Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene . 2008;27:7070–82.

    Article  PubMed  CAS  Google Scholar 

  29. Erenpreisa J, Ivanov A, Wheatley SP, Kosmacek EA, Ianzini F, Anisimov AP, et al. Endopolyploidy in irradiated p53-deficient tumour cell lines: Persistence of cell division activity in giant cells expressing Aurora-B kinase. Cell Biol Int. 2008;32:1044–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Portugal J, Mansilla S, Bataller M. Mechanisms of drug-induced mitotic catastrophe in cancer cells. Curr Pharm Des. 2010;16:69–78.

    Article  PubMed  CAS  Google Scholar 

  31. Roninson IB, Broude EV, Chang BD. If not apoptosis, then what?—treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Update. 2001;4:303–13.

    Article  CAS  Google Scholar 

  32. Sundaram M, Guernsey DL, Rajaraman MM, Rajaraman R. Neosis—a novel type of cell division in cancer. Cancer Biol Ther. 2004;3:207–18.

    Article  PubMed  CAS  Google Scholar 

  33. Zheng L, Dai HF, Zhou MA, Li XJ, Liu CW, Guo ZG, et al. Polyploid cells rewire DNA damage response networks to overcome replication stress-induced barriers for tumour progression. Nat Commun. 2012;3:815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nakayama Y, Uno N, Uno K, Mizoguchi Y, Komoto S, Kazuki Y, et al. Recurrent micronucleation through cell cycle progression in the presence of microtubule inhibitors. Cell Struct Funct. 2015;40:51–59.

    Article  PubMed  CAS  Google Scholar 

  35. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64:252–71.

    Article  PubMed  Google Scholar 

  36. Mosieniak G, Sikora E. Polyploidy: the link between senescence and cancer. Curr Pharm Des. 2010;16:734–40.

    Article  PubMed  CAS  Google Scholar 

  37. Conklin KA. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther. 2004;3:294–300.

    Article  PubMed  CAS  Google Scholar 

  38. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Update. 2004;7:97–110.

    Article  CAS  Google Scholar 

  39. Brown NS, Bicknell R. Hypoxia and oxidative stress in breast cancer—oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res. 2001;3:323–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rodier F, Coppé J-P, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, et al. Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009;11:973–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bucala R. Signal transduction: a most interesting factor. Nature. 2000;408:146–7.

    Article  PubMed  CAS  Google Scholar 

  43. Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L. VEGF-receptor signal transduction. Trends Biochem Sci. 2003;28:488–94.

    Article  PubMed  CAS  Google Scholar 

  44. Baugh JA, Gantier M, Li L, Byrne A, Buckley A, Donnelly SC. Dual regulation of macrophage migration inhibitory factor (MIF) expression in hypoxia by CREB and HIF-1. Biochem Biophys Res Commun. 2006;347:895–903.

    Article  PubMed  CAS  Google Scholar 

  45. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.

    Article  PubMed  CAS  Google Scholar 

  46. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275:25130–8.

    Article  PubMed  CAS  Google Scholar 

  47. Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, et al. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis . 2008;29:713–21.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells (vol 33, pg 116, 2013). Oncogene . 2014;33:134–134.

    Article  CAS  Google Scholar 

  49. Mandal M, Adam L, Mendelsohn J, Kumar R. Nuclear targeting of Bax during apoptosis in human colorectal cancer cells. Oncogene . 1998;17:999–1007.

    Article  PubMed  CAS  Google Scholar 

  50. Kotchetkov R, Cinatl J, Blaheta R, Vogel J-U, Karaskova J, Squire J, et al. Development of resistance to vincristine and doxorubicin in neuroblastoma alters malignant properties and induces additional karyotype changes: a preclinical model. Int J Cancer. 2003;104:36–43.

    Article  PubMed  CAS  Google Scholar 

  51. Dey G, Bharti R, Dhanarajan G, Das S, Dey KK, Kumar BNP, et al. Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer. Sci Rep. 2015;5:10316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kumar BP, Rajput S, Dey KK, Parekh A, Das S, Mazumdar A, et al. Celecoxib alleviates tamoxifen-instigated angiogenic effects by ROS-dependent VEGF/VEGFR2 autocrine signaling. BMC Cancer. 2013;13:1.

    Article  CAS  Google Scholar 

  53. Rajput S, Kumar BP, Sarkar S, Das S, Azab B, Santhekadur PK, et al. Targeted apoptotic effects of thymoquinone and tamoxifen on XIAP mediated Akt regulation in breast cancer. PLoS One. 2013;8:e61342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pirker R, Pereira JR, von Pawel J, Krzakowski M, Ramlau R, Park K, et al. EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol. 2012;13:33–42.

    Article  PubMed  CAS  Google Scholar 

  55. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  56. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Gene Dev. 2003;17:1253–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Anji Anura, Bodhisatwa Das, Raunak Kumar Das, and Prof. Jyotirmoy Chaterjee from IIT Kharagpur for their help in microscopy. We also thank Hasini Jayatilaka and Michelle Karl from Johns Hopkins University for their support. We also thank Sanat Dey, Purna Patra, and other staffs of central research facility of IIT Kharagpur for technical assistance. The research was supported by Department of Biotechnology (BT/PR13996/Med/30/309/2010), Department of Atomic Energy, (35/14/05/2015-BRNS/3053), and Ministry of Human Resource Development (F. NO. 4-23/2014-TS.I). University Grants Commission, Department of Biotechnology, and Fulbright is also hereby acknowledged for scholarship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahitosh Mandal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Co-authors: Sheetal Parida, Chandan Kanta Das.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parekh, A., Das, S., Parida, S. et al. Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo. Oncogene 37, 4546–4561 (2018). https://doi.org/10.1038/s41388-018-0272-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0272-6

This article is cited by

Search

Quick links