Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GABPA inhibits invasion/metastasis in papillary thyroid carcinoma by regulating DICER1 expression

Abstract

The ETS family transcription factor GABPA is suggested as an oncogenic element, which is further supported by the recent reporting of it as the sole ETS member to activate the mutant TERT promoter in thyroid carcinomas (TC). However, it remains unclear how GABPA contributes to TC pathogenesis. The present study is designed to address this issue. TERT expression was significantly diminished in TERT promoter-mutated TC cells upon GABPA inhibition. Surprisingly, GABPA depletion led to robustly increased cellular invasion independently of TERT promoter mutations and TERT expression. DICER1, a component of the microRNA machinery, was identified as a downstream effector of GABPA. GABPA facilitated Dicer1 transcription while its depletion reduced Dicer1 expression. The mutation of the GABPA binding site in the DICER1 promoter led to diminished basal levels of DICER1 promoter activity and abolishment of GABPA-stimulated promoter activity as well. The forced DICER1 expression abrogated the invasiveness of GABPA-depleted TC cells. Consistently, the analyses of 93 patients with papillary thyroid carcinoma (PTC) revealed a positive correlation between GABPA and DICER1 expression. GABPA expression was negatively associated with TERT expression and promoter mutations, in contrast to published observations in cancer cell lines. Lower GABPA expression was associated with distant metastasis and shorter overall/disease-free survival in PTC patients. Similar results were obtained for PTC cases in the TCGA dataset. In addition, a positive correlation between GABPA and DICER1 expression was seen in multiple types of malignancies. Taken together, despite its stimulatory effect on the mutant TERT promoter and telomerase activation, GABPA may itself act as a tumor suppressor rather than an oncogenic factor to inhibit invasion/metastasis in TCs and be a useful predictor for patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lloyd RV. WHO classification of tumours of endocrine organs. In: WHO/IARC classification of tumours. 4th ed.; Lyon, France: WHO Press; 2017.

    Google Scholar 

  2. Kitahara CM, Sosa JA. The changing incidence of thyroid cancer. Nat Rev Endocrinol. 2016;12:646–53.

    Article  Google Scholar 

  3. Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017;13:644–60.

    Article  CAS  Google Scholar 

  4. Liu T, Wang N, Cao J, Sofiadis A, Dinets A, Zedenius J, et al. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene. 2014;33:4978–84.

    Article  CAS  Google Scholar 

  5. Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23:R143–55.

    Article  CAS  Google Scholar 

  6. Liu T, Yuan X, Xu D. Cancer-specific telomerase reverse transcriptase (TERT) promoter mutations: biological and clinical implications. Genes (Basel). 2016;7:E38.

    Article  Google Scholar 

  7. Wang N, Liu T, Sofiadis A, Juhlin CC, Zedenius J, Hoog A, et al. TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA. Cancer. 2014;120:2965–79.

    Article  CAS  Google Scholar 

  8. Melo M, da Rocha AG, Vinagre J, Sobrinho-Simoes M, Soares P. Coexistence of TERT promoter and BRAF mutations in papillary thyroid carcinoma: added value in patient prognosis? J Clin Oncol. 2015;33:667–8.

    Article  Google Scholar 

  9. Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol. 2014;32:2718–26.

    Article  CAS  Google Scholar 

  10. Lee SE, Hwang TS, Choi YL, Han HS, Kim WS, Jang MH, et al. Prognostic significance of TERT promoter mutations in papillary thyroid carcinomas in a BRAF(V600E) mutation-prevalent population. Thyroid. 2016;26:901–10.

    Article  CAS  Google Scholar 

  11. Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab. 2013;98:E1562–6.

    Article  CAS  Google Scholar 

  12. Song YS, Lim JA, Choi H, Won JK, Moon JH, Cho SW, et al. Prognostic effects of TERT promoter mutations are enhanced by coexistence with BRAF or RAS mutations and strengthen the risk prediction by the ATA or TNM staging system in differentiated thyroid cancer patients. Cancer. 2016;122:1370–9.

    Article  CAS  Google Scholar 

  13. Lewis KA, Tollefsbol TO. Regulation of the telomerase reverse transcriptase subunit through epigenetic mechanisms. Front Genet. 2016;7:83.

    Article  Google Scholar 

  14. Pacini F, Cantara S, Capezzone M, Marchisotta S. Telomerase and the endocrine system. Nat Rev Endocrinol. 2011;7:420–30.

    Article  CAS  Google Scholar 

  15. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339:957–9.

    Article  CAS  Google Scholar 

  16. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339:959–61.

    Article  CAS  Google Scholar 

  17. Melo M, Gaspar da Rocha A, Batista R, Vinagre J, Martins MJ, Costa G, et al. TERT, BRAF, and NRAS in primary thyroid cancer and metastatic disease. J Clin Endocrinol Metab. 2017;102:1898–907.

    Article  Google Scholar 

  18. Vinagre J, Almeida A, Populo H, Batista R, Lyra J, Pinto V, et al. Frequency of TERT promoter mutations in human cancers. Nat Commun. 2013;4:2185.

    Article  Google Scholar 

  19. Bell RJ, Rube HT, Kreig A, Mancini A, Fouse SD, Nagarajan RP, et al. Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science. 2015;348:1036–9.

    Article  CAS  Google Scholar 

  20. Stern JL, Theodorescu D, Vogelstein B, Papadopoulos N, Cech TR. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers. Genes Dev. 2015;29:2219–24.

    Article  CAS  Google Scholar 

  21. Sharma NL, Massie CE, Butter F, Mann M, Bon H, Ramos-Montoya A, et al. The ETS family member GABPalpha modulates androgen receptor signalling and mediates an aggressive phenotype in prostate cancer. Nucleic Acids Res. 2014;42:6256–69.

    Article  CAS  Google Scholar 

  22. Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer. 2017;17:337–51.

    Article  CAS  Google Scholar 

  23. Odrowaz Z, Sharrocks AD. The ETS transcription factors ELK1 and GABPA regulate different gene networks to control MCF10A breast epithelial cell migration. PLoS One. 2012;7:e49892.

    Article  CAS  Google Scholar 

  24. Grant GD, Brooks L 3rd, Zhang X, Mahoney JM, Martyanov V, Wood TA, et al. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell. 2013;24:3634–50.

    Article  CAS  Google Scholar 

  25. Yang ZF, Zhang H, Ma L, Peng C, Chen Y, Wang J, et al. GABP transcription factor is required for development of chronic myelogenous leukemia via its control of PRKD2. Proc Natl Acad Sci USA. 2013;110:2312–7.

    Article  CAS  Google Scholar 

  26. Woodward EL, Biloglav A, Ravi N, Yang M, Ekblad L, Wennerberg J, et al. Genomic complexity and targeted genes in anaplastic thyroid cancer cell lines. Endocr Relat Cancer. 2017;24:209–20.

    Article  CAS  Google Scholar 

  27. Liu Z, Li Q, Li K, Chen L, Li W, Hou M, et al. Telomerase reverse transcriptase promotes epithelial–mesenchymal transition and stem cell-like traits in cancer cells. Oncogene. 2013;32:4203–13.

    Article  CAS  Google Scholar 

  28. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, et al. A microRNA targeting dicer for metastasis control. Cell. 2010;141:1195–207.

    Article  CAS  Google Scholar 

  29. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 2009;23:2700–4.

    Article  CAS  Google Scholar 

  30. Rupaimoole R, Ivan C, Yang D, Gharpure KM, Wu SY, Pecot CV, et al. Hypoxia-upregulated microRNA-630 targets Dicer, leading to increased tumor progression. Oncogene. 2016;35:4312–20.

    Article  CAS  Google Scholar 

  31. Rupaimoole R, Wu SY, Pradeep S, Ivan C, Pecot CV, Gharpure KM, et al. Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression. Nat Commun. 2014;5:5202.

    Article  CAS  Google Scholar 

  32. To SKY, Mak ASC, Eva Fung YM, Che CM, Li SS, Deng W, et al. β-catenin downregulates Dicer to promote ovarian cancer metastasis. Oncogene. 2017;36:5927–38.

    Article  CAS  Google Scholar 

  33. van den Beucken T, Koch E, Chu K, Rupaimoole R, Prickaerts P, Adriaens M, et al. Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat Commun. 2014;5:5203.

    Article  Google Scholar 

  34. Zhang L, Cai M, Gong Z, Zhang B, Li Y, Guan L, et al. Geminin facilitates FoxO3 deacetylation to promote breast cancer cell metastasis. J Clin Invest. 2017;127:2159–75.

    Article  Google Scholar 

  35. Jafarnejad SM, Ardekani GS, Ghaffari M, Martinka M, Li G. Sox4-mediated Dicer expression is critical for suppression of melanoma cell invasion. Oncogene. 2013;32:2131–9.

    Article  CAS  Google Scholar 

  36. Prazeres H, Torres J, Rodrigues F, Pinto M, Pastoriza MC, Gomes D, et al. Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene. 2011;30:1302–17.

    Article  CAS  Google Scholar 

  37. Ramirez-Moya J, Wert-Lamas L, Santisteban P. MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene. 2018. https://doi.org/10.1038/s41388-017-0088-9.

  38. Zhang S, Zhang K, Ji P, Zheng X, Jin J, Feng M, et al. GABPA predicts prognosis and inhibits metastasis of hepatocellular carcinoma. BMC Cancer. 2017;17:380.

    Article  Google Scholar 

  39. Zhang K, Guo Y, Wang X, Zhao H, Ji Z, Cheng C, et al. WNT/beta-catenin directs self-renewal symmetric cell division of hTERThigh prostate cancer stem cells. Cancer Res. 2017;77:2534–47.

    Article  CAS  Google Scholar 

  40. Ding D, Xi P, Zhou J, Wang M, Cong YS. Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-kappaB-dependent transcription. FASEB J. 2013;27:4375–83.

    Article  CAS  Google Scholar 

  41. Pestana A, Vinagre J, Sobrinho-Simões M, Soares P. TERT biology and function in cancer: beyond immortalisation. J Mol Endocrinol. 2017;58:R129–46.

    Article  CAS  Google Scholar 

  42. Saretzki G. Extra-telomeric functions of human telomerase: cancer, mitochondria and oxidative stress. Curr Pharm Des. 2015;20:6386–403.

    Article  Google Scholar 

  43. Yu J, Yuan X, Sjoholm L, Liu T, Kong F, Ekstrom TJ, et al. Telomerase reverse transcriptase regulates DNMT3B expression/aberrant DNA methylation phenotype and AKT activation in hepatocellular carcinoma. Cancer Lett. 2018;434:33–41.

    Article  CAS  Google Scholar 

  44. Lee JJ, Foukakis T, Hashemi J, Grimelius L, Heldin NE, Wallin G, et al. Molecular cytogenetic profiles of novel and established human anaplastic thyroid carcinoma models. Thyroid. 2007;17:289–301.

    Article  Google Scholar 

  45. Schweppe RE. Thyroid cancer cell line misidentification: an update. J Clin Endocrinol Metab. 2013;98:956–7.

    Article  CAS  Google Scholar 

  46. DeLellis R. Pathology and genetics of tumours of endocrine organs. In: WHO classification of tumours. 3rd ed.; Lyon, France: WHO Press; 2004.

    Google Scholar 

  47. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  Google Scholar 

  48. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. J.K., Dr. J.F. Costello (University of California, San Francisco) for the TERT promoter reporters, Ms. L. Åhnfalk for excellent assistance in tumor tissue collection, Dr. B. Guan for evaluation of tumor colonies in mouse lung, and E. Berg (Karolinska Institutet) for expert consultations in the statistical analyses. The study was supported by grants from the Swedish Cancer Society, the Cancer Society in Stockholm, Stockholm County Council and Karolinska Institutet, and Shandong Provincial Natural Science Foundation, China (2016ZDJS07A09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catharina Larsson or Dawei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Mu, N., Wang, N. et al. GABPA inhibits invasion/metastasis in papillary thyroid carcinoma by regulating DICER1 expression. Oncogene 38, 965–979 (2019). https://doi.org/10.1038/s41388-018-0483-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0483-x

This article is cited by

Search

Quick links