Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor

Abstract

KIT/PDGFRA oncogenic tyrosine kinase signaling is the central oncogenic event in most gastrointestinal stromal tumors (GIST), which are human malignant mesenchymal neoplasms that often feature myogenic differentiation. Although targeted inhibition of KIT/PDGFRA provides substantial clinical benefit, GIST cells adapt to KIT/PDGFRA driver suppression and eventually develop resistance. The specific molecular events leading to adaptive resistance in GIST remain unclear. By using clinically representative in vitro and in vivo GIST models and GIST patients’ samples, we found that the E3 ubiquitin ligase Atrogin-1 (FBXO32)—the main effector of muscular atrophy in cachexia—resulted in the most critical gene derepressed in response to KIT inhibition, regardless the type of KIT primary or secondary mutation. Atrogin-1 in GISTs is transcriptionally controlled by the KIT-FOXO3a axis, thus indicating overlap with Atrogin-1 regulation mechanisms in nonneoplastic muscle cells. Further, Atrogin-1 overexpression was a GIST-cell-specific pro-survival mechanism that enabled the adaptation to KIT-targeted inhibition by apoptosis evasion through cell quiescence. Buttressed on these findings, we established in vitro and in vivo the preclinical proof-of-concept for co-targeting KIT and the ubiquitin pathway to maximize the therapeutic response to first-line imatinib treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RAS/MAPK and PI3K/mTOR pathways are critical effectors of the KIT oncogenic program for GIST cell survival and proliferation.
Fig. 2: Whole-transcriptome studies identify that FBXO32 is universally highly expressed in GIST in response to KIT or KIT-downstream RAS/MAPK and PI3K/mTOR pathways inhibition.
Fig. 3: Atrogin-1 expression is transcriptionally regulated by FOXO3a in GIST.
Fig. 4: Atrogin-1 promotes GIST cells survival in response to targeted KIT inhibition.
Fig. 5: Atrogin-1 overexpression is induced upon imatinib treatment in GIST patients.
Fig. 6: In vitro and in vivo preclinical evaluation of the combined inhibition of imatinib and TAK-243 in the imatinib-sensitive GIST-T1 and GIST882 cell models.
Fig. 7: Model of the role of Atrogin-1 in GIST. Left, under KIT constitutive activation, KIT-downstream pathways phosphorylate and retain FOXO3a in the cytoplasm.

Similar content being viewed by others

References

  1. Demetri GD, von Mehren M, Antonescu CR, DeMatteo RP, Ganjoo KN, Maki RG, et al. NCCN Task Force report: update on the management of patients with gastrointestinal stromal tumors. J Natl Compr Cancer Netw. 2010;8:S1–41.

    Article  CAS  Google Scholar 

  2. Serrano C, George S. Gastrointestinal stromal tumor: challenges and opportunities for a new decade. Clin Cancer Res. 2020;26:5078–85. https://doi.org/10.1158/1078-0432.CCR-20-1706

    Article  CAS  PubMed  Google Scholar 

  3. Taylor BS, Barretina J, Maki RG, Antonescu CR, Singer S, Ladanyi M. Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer. 2011;11:541–57. https://doi.org/10.1038/nrc3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Marino-Enriquez A, Bennett RR, Zhu M, Shen Y, Eilers G, et al. Dystrophin is a tumor suppressor in human cancers with myogenic programs. Nat Genet. 2014;46:601–6. https://doi.org/10.1038/ng.2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279:577–80.

    Article  CAS  PubMed  Google Scholar 

  6. Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299:708–10. https://doi.org/10.1126/science.1079666

    Article  CAS  PubMed  Google Scholar 

  7. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl J Med. 2002;347:472–80. https://doi.org/10.1056/NEJMoa020461

    Article  CAS  PubMed  Google Scholar 

  8. Liegl B, Kepten I, Le C, Zhu M, Demetri GD, Heinrich MC, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216:64–74. https://doi.org/10.1002/path.2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Serrano C, Marino-Enriquez A, Tao DL, Ketzer J, Eilers G, Zhu M, et al. Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours. Br J cancer. 2019;120:612–20. https://doi.org/10.1038/s41416-019-0389-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heinrich MC, Corless CL, Blanke CD, Demetri GD, Joensuu H, Roberts PJ, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24:4764–74. https://doi.org/10.1200/JCO.2006.06.2265

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Perdreau SA, Chatterjee P, Wang L, Kuan SF, Duensing A. Imatinib mesylate induces quiescence in gastrointestinal stromal tumor cells through the CDH1-SKP2-p27Kip1 signaling axis. Cancer Res. 2008;68:9015–23. https://doi.org/10.1158/0008-5472.CAN-08-1935

    Article  CAS  PubMed  Google Scholar 

  12. Boichuk S, Parry JA, Makielski KR, Litovchick L, Baron JL, Zewe JP, et al. The DREAM complex mediates GIST cell quiescence and is a novel therapeutic target to enhance imatinib-induced apoptosis. Cancer Res. 2013;73:5120–9. https://doi.org/10.1158/0008-5472.CAN-13-0579

    Article  CAS  PubMed  Google Scholar 

  13. Cohen NA, Zeng S, Seifert AM, Kim TS, Sorenson EC, Greer JB, et al. Pharmacological inhibition of KIT activates MET signaling in gastrointestinal stromal tumors. Cancer Res. 2015;75:2061–70. https://doi.org/10.1158/0008-5472.CAN-14-2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li F, Huynh H, Li X, Ruddy DA, Wang Y, Ong R, et al. FGFR-mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors. Cancer Discov. 2015;5:438–51. https://doi.org/10.1158/2159-8290.CD-14-0763

    Article  CAS  PubMed  Google Scholar 

  15. Duensing A, Medeiros F, McConarty B, Joseph NE, Panigrahy D, Singer S, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 2004;23:3999–4006. https://doi.org/10.1038/sj.onc.1207525

    Article  CAS  PubMed  Google Scholar 

  16. Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene. 2007;26:7560–8. https://doi.org/10.1038/sj.onc.1210558

    Article  CAS  PubMed  Google Scholar 

  17. Zhu MJ, Ou WB, Fletcher CD, Cohen PS, Demetri GD, Fletcher JA. KIT oncoprotein interactions in gastrointestinal stromal tumors: therapeutic relevance. Oncogene. 2007;26:6386–95. https://doi.org/10.1038/sj.onc.1210464

    Article  CAS  PubMed  Google Scholar 

  18. Chi P, Chen Y, Zhang L, Guo X, Wongvipat J, Shamu T, et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature. 2010;467:849–53. https://doi.org/10.1038/nature09409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bosbach B, Rossi F, Yozgat Y, Loo J, Zhang JQ, Berrozpe G, et al. Direct engagement of the PI3K pathway by mutant KIT dominates oncogenic signaling in gastrointestinal stromal tumor. Proc Natl Acad Sci USA. 2017;114:E8448–E57. https://doi.org/10.1073/pnas.1711449114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA. 2001;98:14440–5. https://doi.org/10.1073/pnas.251541198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117:399–412. https://doi.org/10.1016/s0092-8674(04)00400-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bardia A, Gounder M, Rodon J, Janku F, Lolkema MP, Stephenson JJ, et al. Phase Ib study of combination therapy with MEK inhibitor binimetinib and phosphatidylinositol 3-kinase inhibitor buparlisib in patients with advanced solid tumors with RAS/RAF alterations. Oncologist. 2020;25:e160–e9. https://doi.org/10.1634/theoncologist.2019-0297

    Article  CAS  PubMed  Google Scholar 

  23. Frolov A, Chahwan S, Ochs M, Arnoletti JP, Pan ZZ, Favorova O, et al. Response markers and the molecular mechanisms of action of Gleevec in gastrointestinal stromal tumors. Mol Cancer Ther. 2003;2:699–709.

    CAS  PubMed  Google Scholar 

  24. Chou JL, Su HY, Chen LY, Liao YP, Hartman-Frey C, Lai YH, et al. Promoter hypermethylation of FBXO32, a novel TGF-beta/SMAD4 target gene and tumor suppressor, is associated with poor prognosis in human ovarian cancer. Lab Investig. 2010;90:414–25. https://doi.org/10.1038/labinvest.2009.138

    Article  CAS  PubMed  Google Scholar 

  25. Ciarapica R, De Salvo M, Carcarino E, Bracaglia G, Adesso L, Leoncini PP, et al. The Polycomb group (PcG) protein EZH2 supports the survival of PAX3-FOXO1 alveolar rhabdomyosarcoma by repressing FBXO32 (Atrogin1/MAFbx). Oncogene. 2014;33:4173–84. https://doi.org/10.1038/onc.2013.471

    Article  CAS  PubMed  Google Scholar 

  26. Zhou H, Liu Y, Zhu R, Ding F, Wan Y, Li Y, et al. FBXO32 suppresses breast cancer tumorigenesis through targeting KLF4 to proteasomal degradation. Oncogene. 2017;36:3312–21. https://doi.org/10.1038/onc.2016.479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Horst A, Burgering BM. Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol cell Biol. 2007;8:440–50. https://doi.org/10.1038/nrm2190

    Article  CAS  PubMed  Google Scholar 

  28. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol. 2008;10:138–48. https://doi.org/10.1038/ncb1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tenbaum SP, Ordonez-Moran P, Puig I, Chicote I, Arques O, Landolfi S, et al. beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med. 2012;18:892–901. https://doi.org/10.1038/nm.2772

    Article  CAS  PubMed  Google Scholar 

  30. Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, et al. The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem. 2005;280:20814–23. https://doi.org/10.1074/jbc.M500528200

    Article  CAS  PubMed  Google Scholar 

  31. Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 2004;5:739–51. https://doi.org/10.1038/nrm1471

    Article  CAS  PubMed  Google Scholar 

  32. Wang D, Zhang Q, Blanke CD, Demetri GD, Heinrich MC, Watson JC, et al. Phase II trial of neoadjuvant/adjuvant imatinib mesylate for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumors: long-term follow-up results of Radiation Therapy Oncology Group 0132. Ann Surg Oncol. 2012;19:1074–80. https://doi.org/10.1245/s10434-011-2190-5

    Article  CAS  PubMed  Google Scholar 

  33. Hyer ML, Milhollen MA, Ciavarri J, Fleming P, Traore T, Sappal D, et al. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nat Med. 2018;24:186–93. https://doi.org/10.1038/nm.4474

    Article  CAS  PubMed  Google Scholar 

  34. Jin J, Li X, Gygi SP, Harper JW. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature. 2007;447:1135–8. https://doi.org/10.1038/nature05902

    Article  CAS  PubMed  Google Scholar 

  35. Hemming ML, Lawlor MA, Zeid R, Lesluyes T, Fletcher JA, Raut CP, et al. Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proc Natl Acad Sci USA. 2018;115:E5746–E55. https://doi.org/10.1073/pnas.1802079115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grunewald S, Klug LR, Muhlenberg T, Lategahn J, Falkenhorst J, Town A, et al. Resistance to avapritinib in PDGFRA-driven GIST is caused by secondary mutations in the PDGFRA kinase domain. Cancer Discov. 2020. https://doi.org/10.1158/2159-8290.CD-20-0487

  37. Serrano C, Leal A, Kuang Y, Morgan JA, Barysauskas CM, Phallen J, et al. Phase I study of rapid alternation of sunitinib and regorafenib for the treatment of tyrosine kinase inhibitor refractory gastrointestinal stromal tumors. Clin Cancer Res. 2019;25:7287–93. https://doi.org/10.1158/1078-0432.CCR-19-2150

    Article  CAS  PubMed  Google Scholar 

  38. Heinrich MC, Maki RG, Corless CL, Antonescu CR, Harlow A, Griffith D, et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008;26:5352–9. https://doi.org/10.1200/JCO.2007.15.7461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dolly SO, Wagner AJ, Bendell JC, Kindler HL, Krug LM, Seiwert TY, et al. Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2016;22:2874–84. https://doi.org/10.1158/1078-0432.CCR-15-2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ran L, Chen Y, Sher J, Wong EWP, Murphy D, Zhang JQ, et al. FOXF1 defines the core-regulatory circuitry in gastrointestinal stromal tumor. Cancer Discov. 2018;8:234–51. https://doi.org/10.1158/2159-8290.CD-17-0468

    Article  CAS  PubMed  Google Scholar 

  41. Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem. 2005;280:2847–56. https://doi.org/10.1074/jbc.M411346200

    Article  CAS  PubMed  Google Scholar 

  42. Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, et al. The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J. 2008;27:1266–76. https://doi.org/10.1038/emboj.2008.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gupta A, Roy S, Lazar AJ, Wang WL, McAuliffe JC, Reynoso D, et al. Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci USA. 2010;107:14333–8. https://doi.org/10.1073/pnas.1000248107

    Article  PubMed  PubMed Central  Google Scholar 

  44. Garcia-Valverde A, Rosell J, Serna G, Valverde C, Carles J, Nuciforo P, et al. Preclinical activity of PI3K inhibitor copanlisib in gastrointestinal stromal tumor. Mol Cancer Ther. 2020;19:1289–97. https://doi.org/10.1158/1535-7163.MCT-19-1069

    Article  CAS  PubMed  Google Scholar 

  45. Garner AP, Gozgit JM, Anjum R, Vodala S, Schrock A, Zhou T, et al. Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin Cancer Res. 2014;20:5745–55. https://doi.org/10.1158/1078-0432.CCR-14-1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  47. Maurel J, Lopez-Pousa A, Calabuig S, Bague S, Del Muro XG, Sanjuan X, et al. Phosphorylated-insulin growth factor I receptor (p-IGF1R) and metalloproteinase-3 (MMP3) expression in advanced gastrointestinal stromal tumors (GIST). A GEIS 19 study. Clin Sarcoma Res. 2016;6:10 https://doi.org/10.1186/s13569-016-0050-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pascual-Reguant L, Blanco E, Galan S, Le Dily F, Cuartero Y, Serra-Bardenys G, et al. Lamin B1 mapping reveals the existence of dynamic and functional euchromatin lamin B1 domains. Nat Commun. 2018;9:3420 https://doi.org/10.1038/s41467-018-05912-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vitiello GA, Bowler TG, Liu M, Medina BD, Zhang JQ, Param NJ, et al. Differential immune profiles distinguish the mutational subtypes of gastrointestinal stromal tumor. J Clin Investig. 2019;129:1863–77. https://doi.org/10.1172/JCI124108

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47 https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by the 2014 SARC International Career Development Award (SARC Sarcoma Spore 1U54CA168512–01), Fundación Mari Paz Jiménez Casado, FERO Foundation, Spanish Society of Medical Oncology (SEOM), PERIS SLT006/17/221, ISCIII PI16/01371 and PI19/01271, all to C.S. ISCIII FI20/00275 (to DG-P), and a Ph.D. fellowship from the National Secretary for Higher Education, Science, Technology and Innovation of Ecuador (SENESCYT) (to DFP-J). AE-C is funded by ISCIII PT17/0009/0019 and co-funded by FEDER. We thank the Cellex Foundation for providing facilities and equipment.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study. Conception and design: AG-V, GDD, JAF, JA, and CS. Data acquisition: AG-V, JR, DFP-J, IO-R, EA, JM, JR-C, AE, MG, and CS. Data analysis: AG-V, JR, SS, DGP, EA, AE, MG, and CS. Data interpretation: AG-V, JR, SS, DGP, CV, JC, JAF, JA, and CSG. Writing: AG-V and CS. All authors revisited and approved the draft.

Corresponding author

Correspondence to César Serrano.

Ethics declarations

Competing interests

SS has received consulting fees (advisory role) from Boehringer Ingelheim. DFP-J has received travel grants from Pfizer, Roemmers, and Roche. MG has received consulting fees from Roche and Illumina. CV has received consulting fees (advisory role) from Lilly, PharmaMar, Pfizer, Eisai, Bayer, Mundipharma, GlaxoSmithKline, and travel grants from PharmaMar, Lilly, Novartis, Bayer, and Pfizer. CS has received research funding (institution) from Karyopharm, Pfizer, Inc, Deciphera Pharmaceuticals, and Bayer AG; consulting fees (advisory role) from CogentBio, Immunicum AB, Deciphera Pharmaceuticals and Blueprint Medicines; payment for lectures from Bayer AG and Blueprint Medicines; and travel grants from PharmaMar, Pfizer, Bayer AG, Novartis, and Lilly. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Valverde, A., Rosell, J., Sayols, S. et al. E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor. Oncogene 40, 6614–6626 (2021). https://doi.org/10.1038/s41388-021-02049-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02049-0

This article is cited by

Search

Quick links