Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dysbiotic microbiome promotes head and neck squamous cell carcinoma

Abstract

Recent studies have reported dysbiotic oral microbiota and tumor-resident bacteria in human head and neck squamous cell carcinoma (HNSCC). We aimed to identify and validate oral microbial signatures in treatment-naïve HNSCC patients compared with healthy control subjects. We confirm earlier reports that the relative abundances of Lactobacillus spp. and Neisseria spp. are elevated and diminished, respectively, in human HNSCC. In parallel, we examined the disease-modifying effects of microbiota in HNSCC, through both antibiotic depletion of microbiota in an induced HNSCC mouse model (4-Nitroquinoline 1-oxide, 4NQO) and reconstitution of tumor-associated microbiota in a germ-free orthotopic mouse model. We demonstrate that depletion of microbiota delays oral tumorigenesis, while microbiota transfer from mice with oral cancer accelerates tumorigenesis. Enrichment of Lactobacillus spp. was also observed in murine HNSCC, and activation of the aryl-hydrocarbon receptor was documented in both murine and human tumors. Together, our findings support the hypothesis that dysbiosis promotes HNSCC development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oral microbiotas differ between HNSCC cases and non-HNSCC controls.
Fig. 2: Alpha-diversity indices differ between HNSCC cases and non-HNSCC controls.
Fig. 3: Differentially abundant taxa between HNSCC cases and non-HNSCC controls.
Fig. 4: Overlap in taxa differentially abundant between non-HNSCC controls and different tumor locations.
Fig. 5: Differential abundance of Lactobacillus and Neisseria species in HNSCC cases and controls.
Fig. 6: Reduced tongue tumor formation and size upon antibiotic (Abx) treatment.
Fig. 7: Aryl-hydrocarbon Receptor (AhR) expression in human and murine HNSCC.
Fig. 8: Effects of microbiome on tongue tumor development in germ-free and reconstitution conditions.

Similar content being viewed by others

Data availability

Demultiplexed 16 S rRNA paired-end sequence data and associated metadata were deposited in the NCBI Sequence Read Archive under BioProject ID PRJNA749451. All other data supporting the findings of this study are available within the paper and its supplementary files or are available from the corresponding authors upon reasonable request.

References

  1. Pfister DG, Spencer S, Adelstein D, Adkins D, Anzai Y, Brizel DM, et al. Head and Neck Cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2020;18:873–98.

    Article  PubMed  Google Scholar 

  2. Head LQM. Head and neck cancer. N Engl J Med. 2020;382:60–72.

    Article  Google Scholar 

  3. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118:3030–44.

    Article  CAS  PubMed  Google Scholar 

  4. Blaser MJ. Understanding microbe-induced cancers. Cancer Prev Res (Philos). 2008;1:15–20.

    Article  Google Scholar 

  5. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Healy CM, Moran GP. The microbiome and oral cancer: More questions than answers. Oral Oncol. 2019;89:30–33.

    Article  PubMed  Google Scholar 

  7. Ganly I, Yang L, Giese RA, Hao Y, Nossa CW, Morris LGT, et al. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus. Int J Cancer. 2019;145:775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hooper SJ, Wilson MJ, Crean SJ. Exploring the link between microorganisms and oral cancer: a systematic review of the literature. Head Neck. 2009;31:1228–39.

    Article  PubMed  Google Scholar 

  9. Neville BW, Day TA. Oral cancer and precancerous lesions. CA Cancer J Clin. 2002;52:195–215.

    Article  PubMed  Google Scholar 

  10. Gholizadeh P, Eslami H, Yousefi M, Asgharzadeh M, Aghazadeh M, Kafil HS. Role of oral microbiome on oral cancers, a review. Biomed Pharmacother. 2016;84:552–8.

    Article  CAS  PubMed  Google Scholar 

  11. Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends Microbiol. 2005;13:589–95.

    Article  CAS  PubMed  Google Scholar 

  12. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol. 2003;30:644–54.

    Article  PubMed  Google Scholar 

  13. Pushalkar S, Mane SP, Ji X, Li Y, Evans C, Crasta OR, et al. Microbial diversity in saliva of oral squamous cell carcinoma. FEMS Immunol Med Microbiol. 2011;61:269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, Rodriguez-Hilario A, Gonzalez H, Bondy J, et al. 16 S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget. 2016;7:51320–34.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wolf A, Moissl-Eichinger C, Perras A, Koskinen K, Tomazic PV, Thurnher D. The salivary microbiome as an indicator of carcinogenesis in patients with oropharyngeal squamous cell carcinoma: a pilot study. Sci Rep. 2017;7:5867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Guerrero-Preston R, White JR, Godoy-Vitorino F, Rodriguez-Hilario A, Navarro K, Gonzalez H, et al. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation. Oncotarget. 2017;8:110931–48.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hayes RB, Ahn J, Fan X, Peters BA, Ma Y, Yang L, et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 2018;4:358–65.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shay E, Sangwan N, Padmanabhan R, Lundy S, Burkey B, Eng C. Bacteriome and mycobiome and bacteriome-mycobiome interactions in head and neck squamous cell carcinoma. Oncotarget. 2020;11:2375–86.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Quintana FJ. The aryl hydrocarbon receptor: a molecular pathway for the environmental control of the immune response. Immunology. 2013;138:183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quintana FJ, Sherr DH. Aryl hydrocarbon receptor control of adaptive immunity. Pharm Rev. 2013;65:1148–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol. 2014;32:403–32.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Wu R, Dingle RW, Gairola CG, Valentino J, Swanson HI. Cigarette smoke condensate and dioxin suppress culture shock induced senescence in normal human oral keratinocytes. Oral Oncol. 2007;43:693–700.

    Article  PubMed  CAS  Google Scholar 

  23. Chang H, Chang LW, Cheng YH, Tsai WT, Tsai MX, Lin P. Preferential induction of CYP1A1 and CYP1B1 in CCSP-positive cells. Toxicological Sci: Off J Soc Toxicol. 2006;89:205–13.

    Article  CAS  Google Scholar 

  24. Lanis JM, Alexeev EE, Curtis VF, Kitzenberg DA, Kao DJ, Battista KD, et al. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol. 2017;10:1133–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22:586–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jin UH, Lee SO, Sridharan G, Lee K, Davidson LA, Jayaraman A, et al. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol Pharmacol. 2014;85:777–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–85.

    Article  CAS  PubMed  Google Scholar 

  28. Stange J, Veldhoen M. The aryl hydrocarbon receptor in innate T cell immunity. Semin Immunopathol. 2013;35:645–55.

    Article  CAS  PubMed  Google Scholar 

  29. Stockinger B, Hirota K, Duarte J, Veldhoen M. External influences on the immune system via activation of the aryl hydrocarbon receptor. Semin Immunol. 2011;23:99–105.

    Article  CAS  PubMed  Google Scholar 

  30. Stanford EA, Ramirez-Cardenas A, Wang Z, Novikov O, Alamoud K, Koutrakis P, et al. Role for the Aryl hydrocarbon receptor and diverse ligands in oral squamous cell carcinoma migration and tumorigenesis. Mol Cancer Res. 2016;14:696–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PloS One. 2013;8:e67019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16 S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Le Cao KA, Boitard S, Besse P. Sparse PLS discriminant analysis discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinforma. 2011;12:253

    Article  Google Scholar 

  34. Rohart F, Gautier B, Singh A, Le, Cao KA. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13:e1005752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33:1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Statnikov A, Henaff M, Narendra V, Konganti K, Li Z, Yang L, et al. A comprehensive evaluation of multicategory classification methods for microbiomic data. Microbiome. 2013;1:11.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.

    Google Scholar 

  38. Hooper SJ, Crean SJ, Lewis MA, Spratt DA, Wade WG, Wilson MJ. Viable bacteria present within oral squamous cell carcinoma tissue. J Clin Microbiol. 2006;44:1719–25.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Al-Hebshi NN, Nasher AT, Maryoud MY, Homeida HE, Chen T, Idris AM, et al. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep. 2017;7:1834.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFbeta signaling. Oncogene. 2016;35:4641–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen X, Cao Y, Sedhom W, Lu L, Liu Y, Wang H, et al. Distinct roles of PIK3CA in the enrichment and maintenance of cancer stem cells in head and neck squamous cell carcinoma. Mol Oncol. 2019;14:139–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Alfano M, Canducci F, Nebuloni M, Clementi M, Montorsi F, Salonia A. The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat Rev Urol. 2016;13:77–90.

    Article  CAS  PubMed  Google Scholar 

  43. Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis. 2014;35:249–55.

    Article  CAS  PubMed  Google Scholar 

  44. Ohtani N. Microbiome and cancer. Semin Immunopathol. 2015;37:65–72.

    Article  CAS  PubMed  Google Scholar 

  45. Brennan CA, Garrett WS. Gut Microbiota, Inflammation, and Colorectal Cancer. Annu Rev Microbiol. 2016;70:395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2016;87:120–27.

    Google Scholar 

  47. Yu G, Gail MH, Shi J, Klepac-Ceraj V, Paster BJ, Dye BA, et al. Association between upper digestive tract microbiota and cancer-predisposing states in the esophagus and stomach. Cancer Epidemiol Biomark Prev. 2014;23:735–41.

    Article  Google Scholar 

  48. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103.

    Article  CAS  PubMed  Google Scholar 

  49. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–97.

    Article  CAS  PubMed  Google Scholar 

  51. Bebek G, Bennett KL, Funchain P, Campbell R, Seth R, Scharpf J, et al. Microbiomic subprofiles and MDR1 promoter methylation in head and neck squamous cell carcinoma. Hum Mol Genet. 2012;21:1557–65.

    Article  CAS  PubMed  Google Scholar 

  52. Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011;10:324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hold GL, Garrett WS. Gut microbiota. Microbiota organization-a key to understanding CRC development. Nat Rev Gastroenterol Hepatol. 2015;12:128–9.

    Article  CAS  PubMed  Google Scholar 

  54. Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017;14:527–39.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sfanos KS, Yegnasubramanian S, Nelson WG, De, Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol. 2018;15:11–24.

    Article  PubMed  Google Scholar 

  56. Liu Y, Liang X, Yin X, Lv J, Tang K, Ma J, et al. Blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-gamma-induced immunologic dormancy of tumor-repopulating cells. Nat Commun. 2017;8:15207.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22:598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alexeev EE, Lanis JM, Kao DJ, Campbell EL, Kelly CJ, Battista KD, et al. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am J Pathol. 2018;188:1183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9:3294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, Merriman J, et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells. Science. 2017;357:806–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 2017;19:848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell. 2021;39:1317–41.

    Article  CAS  PubMed  Google Scholar 

  63. Andreeva NV, Gabbasova RR, Grivennikov SI. Microbiome in cancer progression and therapy. Curr Opin Microbiol. 2020;56:118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Elinav E, Garrett WS, Trinchieri G, Wargo J. The cancer microbiome. Nat Rev Cancer. 2019;19:371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science. 2018;359:1366–70.

    Article  CAS  PubMed  Google Scholar 

  66. Daniel CR, McQuade JL. Nutrition and cancer in the microbiome era. Trends Cancer. 2019;5:521–4.

    Article  PubMed  Google Scholar 

  67. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33:570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25:377–88.

    Article  CAS  PubMed  Google Scholar 

  69. Frank DN, Giese APJ, Hafren L, Bootpetch TC, Yarza TKL, Steritz MJ, et al. Otitis media susceptibility and shifts in the head and neck microbiome due to SPINK5 variants. J Med Genet. 2020.

  70. Vickery TW, Armstrong M, Kofonow JM, Robertson CE, Kroehl ME, Reisdorph NA, et al. Altered tissue specialized pro-resolving mediators in chronic rhinosinusitis. Prostaglandins Leukotrienes Essent Fat Acids. 2020;164:102218.

    Article  CAS  Google Scholar 

  71. Pruesse E, Peplies J, Glockner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.

    Article  CAS  PubMed  Google Scholar 

  74. Wie SM, Wellberg E, Karam SD, Reyland ME. Tyrosine kinase inhibitors protect the salivary gland from radiation damage by inhibiting activation of protein kinase C-delta. Mol Cancer Ther. 2017;16:1989–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Frank DN, Manigart O, Leroy V, Meda N, Valea D, Zhang W, et al. Altered vaginal microbiota are associated with perinatal mother-to-child HIV transmission in African women from Burkina Faso. J Acquir Immune Defic Syndr. 2012;60:299–306.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. Critical evaluation of two primers commonly used for amplification of bacterial 16 S rRNA genes. Appl Environ Microbiol. 2008;74:2461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148:257–66.

    Article  CAS  PubMed  Google Scholar 

  78. R Core Team. R: A Language and Environment for Statistical Computing, Vienna, Austria. R Foundation for Statistical Computing: Vienna, Austria, 2019.

  79. Robertson CE, Harris JK, Wagner BD, Granger D, Browne K, Tatem B, et al. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics. 2013;29:3100–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, et al. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol Lett. 2011;14:19–28.

    Article  PubMed  Google Scholar 

  81. Oksanen J, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: Community Ecology Package. R package version 2.5-7. http://vegan.r-forge.r-project.org, 2019.

  82. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:2890300.

    Google Scholar 

  83. Fox J, Weisberg S An R. Companion to Applied Regression, second edn. SAGE Publications, Inc: Thousand Oaks, CA USA, 2019.

  84. Vitale-Cross L, Czerninski R, Amornphimoltham P, Patel V, Molinolo AA, Gutkind JS. Chemical carcinogenesis models for evaluating molecular-targeted prevention and treatment of oral cancer. Cancer Prev Res (Philos) (Res Support, N. I H, Intramural Rev). 2009;2:419–22.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from NIH-NIDCR (R56 DE028959; SLL & DNF), NIH-NIAMS (R01 AR075033; KAK), the Cancer League of Colorado (SLL & DNF), Golfers Against Cancer (SLL & DNF), and the University of Colorado Cancer Center (SLL & DNF). DNF, CER, and JMK were supported in part by the University of Colorado GI and Liver Innate Immunity Program. VRR was supported in part by a Career Development Grant from the University of Colorado Cancer Center and NIH-NIDCD K23 DC014747 (VRR). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding organizations.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DNF, JS, VRR, SLL. Acquisition, analysis, or interpretation of data: DNF, YQ, SZ, LL, JMK, CER, YL, HW, CLL, KAK, JS, VRR, SLL. Original manuscript preparation: DNF, SLL. Manuscript editing: all authors.

Corresponding authors

Correspondence to Daniel N. Frank or Shi-Long Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, D.N., Qiu, Y., Cao, Y. et al. A dysbiotic microbiome promotes head and neck squamous cell carcinoma. Oncogene 41, 1269–1280 (2022). https://doi.org/10.1038/s41388-021-02137-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02137-1

This article is cited by

Search

Quick links