Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear receptor crosstalk — defining the mechanisms for therapeutic innovation

Abstract

Nuclear receptor crosstalk can be defined as the interplay between different nuclear receptors or between their overlapping signalling pathways. A subset of nuclear receptors (such as PPARs and RARs) engage in the formation of well-characterized ‘typical’ heterodimers with RXR. ‘Atypical’ heterodimers (such as GR with PPARs, or PPAR with ERR) might form a novel class of physical complexes that might be more transient in nature. These heterodimers might harbour strong transcriptional flexibility, with no strict need for DNA binding of both partners. Direct crosstalk could stem from a pairwise physical association between atypical nuclear receptor heterodimers, either via pre-existing interaction pairs or via interactions that are newly induced with small molecules; such crosstalk might constitute an uncharted space to target nuclear receptor physiological and/or pathophysiological actions. In this Review, we discuss the emerging aspects of crosstalk in the nuclear receptor field and present various mechanistic crosstalk modes with examples that support applicability of the atypical heterodimer concept. Stabilization or disruption, in a context-dependent or cell type-dependent manner, of these more transient heterodimers is expected to fuel unprecedented translational approaches to yield novel therapeutic agents to treat major human diseases with higher precision.

Key points

  • Nuclear receptors are versatile transcription factors of which most members can, to various extents, be ligand-modulated, which renders them highly susceptible to external control over their gene regulatory activities.

  • Atypical, probably more transient, nuclear receptor heterodimerization can influence particular subsets of genes and hence can affect gene expression patterns in distinct ways.

  • Broad mechanistic insights into the contribution of atypical nuclear receptor heterodimers to unique gene-modulatory events are lacking.

  • Molecular modulation of atypical nuclear receptor pairs might serve as novel avenues for ground-breaking drug development.

  • Targeting atypical heterodimers might lead to innovative and selective therapeutics with reduced side effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NR functional domain organization and most relevant regulatory functions.
Fig. 2: Visual representation of the atypical heterodimerization concept.
Fig. 3: Various modes of upstream pathway crosstalk mechanisms, indirectly influencing downstream gene transcription patterns.
Fig. 4: Conceptual and proven modes of NR crosstalk mechanisms at the DNA level.

Similar content being viewed by others

References

  1. McKenna, N. J. et al. Minireview: evolution of NURSA, the nuclear receptor signaling atlas. Mol. Endocrinol. 23, 740–746 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sladek, R., Bader, J. A. & Giguere, V. The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Mol. Cell. Biol. 17, 5400–5409 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gallastegui, N., Mackinnon, J. A., Fletterick, R. J. & Estebanez-Perpina, E. Advances in our structural understanding of orphan nuclear receptors. Trends Biochem. Sci. 40, 25–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. B’chir, W. et al. Divergent role of estrogen-related receptor α in lipid- and fasting-induced hepatic steatosis in mice. Endocrinology 159, 2153–2164 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Jimenez-Panizo, A., Perez, P., Rojas, A., Fuentes-Prior, P. & Estebanez-Perpina, E. Non-canonical dimerization of the androgen receptor and other nuclear receptors: implications for human disease. Endocr. Relat. Cancer 26, R479–R497 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Yi, P. et al. Structure of a biologically active estrogen receptor-coactivator complex on DNA. Mol. Cell 57, 1047–1058 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fuentes-Prior, P., Rojas, A., Hagler, A. T. & Estebanez-Perpina, E. Diversity of quaternary structures regulates nuclear receptor activities. Trends Biochem. Sci. 44, 2–6 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Mohideen-Abdul, K. et al. Importance of the sequence-directed DNA shape for specific binding site recognition by the estrogen-related receptor. Front. Endocrinol. 8, 140 (2017).

    Article  Google Scholar 

  9. Chandra, V. et al. The quaternary architecture of RARβ–RXRα heterodimer facilitates domain-domain signal transmission. Nat. Commun. 8, 868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sherman, M. H., Downes, M. & Evans, R. M. Nuclear receptors as modulators of the tumor microenvironment. Cancer Prev. Res. 5, 3–10 (2012).

    Article  CAS  Google Scholar 

  11. Ahmadian, M. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557–566 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Evans, R. M. & Mangelsdorf, D. J. Nuclear receptors, RXR, and the big bang. Cell 157, 255–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Gross, B., Pawlak, M., Lefebvre, P. & Staels, B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 13, 36–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Barnes, P. J. Glucocorticosteroids. Handb. Exp. Pharmacol. 237, 93–115 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Joseph, R. M., Hunter, A. L., Ray, D. W. & Dixon, W. G. Systemic glucocorticoid therapy and adrenal insufficiency in adults: a systematic review. Semin. Arthritis Rheum. 46, 133–141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pariollaud, M. et al. Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation. J. Clin. Invest. 128, 2281–2296 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hennuyer, N. et al. The novel selective PPARα modulator (SPPARMα) pemafibrate improves dyslipidemia, enhances reverse cholesterol transport and decreases inflammation and atherosclerosis. Atherosclerosis 249, 200–208 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Chinenov, Y., Gupte, R. & Rogatsky, I. Nuclear receptors in inflammation control: repression by GR and beyond. Mol. Cell. Endocrinol. 380, 55–64 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Louw-du Toit, R., Perkins, M. S., Hapgood, J. P. & Africander, D. Comparing the androgenic and estrogenic properties of progestins used in contraception and hormone therapy. Biochem. Biophys. Res. Commun. 491, 140–146 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Severson, T. M. et al. Characterizing steroid hormone receptor chromatin binding landscapes in male and female breast cancer. Nat. Commun. 9, 482 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao, T. et al. Estrogen-regulated feedback loop limits the efficacy of estrogen receptor-targeted breast cancer therapy. Proc. Natl Acad. Sci. USA 115, 7869–7878 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson, G. D. et al. Human genome-wide measurement of drug-responsive regulatory activity. Nat. Commun. 9, 5317 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stelloo, S. et al. Integrative epigenetic taxonomy of primary prostate cancer. Nat. Commun. 9, 4900 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nadal, M. et al. Structure of the homodimeric androgen receptor ligand-binding domain. Nat. Commun. 8, 14388 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Presman, D. M. & Hager, G. L. More than meets the dimer: What is the quaternary structure of the glucocorticoid receptor? Transcription 8, 32–39 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Presman, D. M. et al. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc. Natl Acad. Sci. USA 113, 8236–8241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chandra, V. et al. Multidomain integration in the structure of the HNF-4α nuclear receptor complex. Nature 495, 394–398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chandra, V. et al. Structure of the intact PPAR-γ–RXR-α nuclear receptor complex on DNA. Nature 456, 350–356 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kumar, R. & McEwan, I. J. Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Endocr. Rev. 33, 271–299 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rastinejad, F., Huang, P., Chandra, V. & Khorasanizadeh, S. Understanding nuclear receptor form and function using structural biology. J. Mol. Endocrinol. 51, T1–T21 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Moras, D., Billas, I. M., Rochel, N. & Klaholz, B. P. Structure-function relationships in nuclear receptors: the facts. Trends Biochem. Sci. 40, 287–290 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Billas, I. & Moras, D. Allosteric controls of nuclear receptor function in the regulation of transcription. J. Mol. Biol. 425, 2317–2329 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Helsen, C. et al. Structural basis for nuclear hormone receptor DNA binding. Mol. Cell. Endocrinol. 348, 411–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Louw, A. GR dimerization and the impact of GR dimerization on GR protein stability and half-life. Front. Immunol. 10, 1693 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Altucci, L., Leibowitz, M. D., Ogilvie, K. M., de Lera, A. R. & Gronemeyer, H. RAR and RXR modulation in cancer and metabolic disease. Nat. Rev. Drug Discov. 6, 793–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Mangelsdorf, D. J. & Evans, R. M. The RXR heterodimers and orphan receptors. Cell 83, 841–850 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, M. W. et al. Time-gated detection of protein-protein interactions with transcriptional readout. eLife 6, e30233 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Du, Y. et al. Assembly of a GPCR-G protein complex. Cell 177, 1232–1242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gupte, T. M. et al. Minute-scale persistence of a GPCR conformation state triggered by non-cognate G protein interactions primes signaling. Nat. Commun. 10, 4836 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bougarne, N. et al. PPARα blocks glucocorticoid receptor α-mediated transactivation but cooperates with the activated glucocorticoid receptor α for transrepression on NF-κB. Proc. Natl Acad. Sci. USA 106, 7397–7402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bougarne, N. et al. Mechanisms underlying the functional cooperation between PPARα and GRα to attenuate inflammatory responses. Front. Immunol. 10, 1769 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Riccardi, L. et al. Peroxisome proliferator-activated receptor-α modulates the anti-inflammatory effect of glucocorticoids in a model of inflammatory bowel disease in mice. Shock 31, 308–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Vandewalle, J., Luypaert, A., De Bosscher, K. & Libert, C. Therapeutic mechanisms of glucocorticoids. Trends Endocrinol. Metab. 29, 42–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Yoshimaru, T. et al. Targeting BIG3-PHB2 interaction to overcome tamoxifen resistance in breast cancer cells. Nat. Commun. 4, 2443 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Vettorazzi, S. et al. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat. Commun. 6, 7796 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Bayrer, J. R. et al. LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival. Nat. Commun. 9, 4055 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Katzenellenbogen, B. S. Mechanisms of action and cross-talk between estrogen receptor and progesterone receptor pathways. J. Soc. Gynecol. Investig. 7, S33–S37 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Kraus, W. L., Weis, K. E. & Katzenellenbogen, B. S. Inhibitory cross-talk between steroid hormone receptors: differential targeting of estrogen receptor in the repression of its transcriptional activity by agonist- and antagonist-occupied progestin receptors. Mol. Cell. Biol. 15, 1847–1857 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ballare, C. et al. Two domains of the progesterone receptor interact with the estrogen receptor and are required for progesterone activation of the c-Src/Erk pathway in mammalian cells. Mol. Cell. Biol. 23, 1994–2008 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McFall, T. et al. Progesterone receptor a promotes invasiveness and metastasis of luminal breast cancer by suppressing regulation of critical microRNAs by estrogen. J. Biol. Chem. 293, 1163–1177 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Meijsing, S. H., Elbi, C., Luecke, H. F., Hager, G. L. & Yamamoto, K. R. The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release. Mol. Cell. Biol. 27, 2442–2451 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ricketson, D., Hostick, U., Fang, L., Yamamoto, K. R. & Darimont, B. D. A conformational switch in the ligand-binding domain regulates the dependence of the glucocorticoid receptor on Hsp90. J. Mol. Biol. 368, 729–741 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Oakley, R. H. & Cidlowski, J. A. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J. Allergy Clin. Immunol. 132, 1033–1044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kadmiel, M. & Cidlowski, J. A. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol. Sci. 34, 518–530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ratman, D. et al. Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα. Nucleic Acids Res. 44, 10539–10553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bougarne, N. et al. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr. Rev. 39, 760–802 (2018).

    Article  PubMed  Google Scholar 

  58. Nie, M., Corbett, L., Knox, A. J. & Pang, L. Differential regulation of chemokine expression by peroxisome proliferator-activated receptor γ agonists: interactions with glucocorticoids and β2-agonists. J. Biol. Chem. 280, 2550–2561 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Lahiri, S., Sen, T. & Palit, G. Involvement of glucocorticoid receptor and peroxisome proliferator activated receptor-γ in pioglitazone mediated chronic gastric ulcer healing in rats. Eur. J. Pharmacol. 609, 118–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, X. et al. PPARα and GR differentially down-regulate the expression of nuclear factor-κB-responsive genes in vascular endothelial cells. Endocrinology 142, 3332–3339 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707–721 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lemberger, T. et al. Regulation of the peroxisome proliferator-activated receptor α gene by glucocorticoids. J. Biol. Chem. 269, 24527–24530 (1994).

    CAS  PubMed  Google Scholar 

  63. Steineger, H. H. et al. Dexamethasone and insulin demonstrate marked and opposite regulation of the steady-state mRNA level of the peroxisomal proliferator-activated receptor (PPAR) in hepatic cells. Hormonal modulation of fatty-acid-induced transcription. Eur. J. Biochem. 225, 967–974 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Lemberger, T. et al. Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J. Biol. Chem. 271, 1764–1769 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, X. et al. Peroxisome proliferator-activated receptor α agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats. Biochem. Biophys Res. Commun. 368, 865–870 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Dubois, V., Eeckhoute, J., Lefebvre, P. & Staels, B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J. Clin. Invest. 127, 1202–1214 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rando, G. et al. Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism. eLife 5, e11853 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cadoudal, T. et al. Proposed involvement of adipocyte glyceroneogenesis and phosphoenolpyruvate carboxykinase in the metabolic syndrome. Biochimie 87, 27–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Fardet, L., Cabane, J., Lebbe, C., Morel, P. & Flahault, A. Incidence and risk factors for corticosteroid-induced lipodystrophy: a prospective study. J. Am. Acad. Dermatol. 57, 604–609 (2007).

    Article  PubMed  Google Scholar 

  70. Eliasson, B. et al. Amelioration of insulin resistance by rosiglitazone is associated with increased adipose cell size in obese type 2 diabetic patients. Adipocyte 3, 314–321 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hermanowski-Vosatka, A. et al. PPARα agonists reduce 11β-hydroxysteroid dehydrogenase type 1 in the liver. Biochem. Biophys. Res. Commun. 279, 330–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Wake, D. J. et al. Effects of peroxisome proliferator-activated receptor-α and -γ agonists on 11β-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue in men. J. Clin. Endocrinol. Metab. 92, 1848–1856 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Vagnerova, K. et al. Peroxisome proliferator-activated receptor-γ stimulates 11β-hydroxysteroid dehydrogenase type 1 in rat vascular smooth muscle cells. Steroids 76, 577–581 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Huss, J. M., Torra, I. P., Staels, B., Giguere, V. & Kelly, D. P. Estrogen-related receptor α directs peroxisome proliferator-activated receptor α signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol. Cell. Biol. 24, 9079–9091 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Patch, R. J. et al. Identification of diaryl ether-based ligands for estrogen-related receptor α as potential antidiabetic agents. J. Med. Chem. 54, 788–808 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Akter, M. H., Yamaguchi, T., Hirose, F. & Osumi, T. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor α. Biochem. Biophy. Res. Commun. 368, 563–568 (2008).

    Article  CAS  Google Scholar 

  77. Fan, W. & Evans, R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr. Opin. Cell Biol. 33, 49–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Cresci, S. et al. A PPARα promoter variant impairs ERR-dependent transactivation and decreases mortality after acute coronary ischemia in patients with diabetes. PLoS One 5, e12584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huss, J. M. et al. The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab. 6, 25–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Oka, S. et al. PPARα-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab. 14, 598–611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hong, Y. A. et al. Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice. PLoS One 9, e96147 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wei, W. et al. PGC1β mediates PPARγ activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab. 11, 503–516 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nguyen, T., Pappireddi, N. & Wuhr, M. Proteomics of nucleocytoplasmic partitioning. Curr. Opin. Chem. Biol. 48, 55–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. IJpenberg, A. et al. In vivo activation of PPAR target genes by RXR homodimers. EMBO J. 23, 2083–2091 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tan, N. S., Michalik, L., Desvergne, B. & Wahli, W. Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes. J. Steroid Biochem. Mol. Biol. 93, 99–105 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Giudici, M., Goni, S., Fan, R. & Treuter, E. Nuclear receptor coregulators in metabolism and disease. Handb. Exp. Pharmacol. 233, 95–135 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. De Bosscher, K., Vanden Berghe, W. & Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocr. Rev. 24, 488–522 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Schmidt, S. F., Larsen, B. D., Loft, A. & Mandrup, S. Cofactor squelching: artifact or fact? BioEssays 38, 618–626 (2016).

    Article  PubMed  Google Scholar 

  89. Dendoncker, K. et al. TNF-α inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile. Proc. Natl Acad. Sci. USA 116, 12942–12951 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ju, D., He, J., Zhao, L., Zheng, X. & Yang, G. Estrogen related receptor α-induced adipogenesis is PGC-1β-dependent. Mol. Biol. Rep. 39, 3343–3354 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Nie, Y. & Wong, C. Suppressing the activity of ERRα in 3T3-L1 adipocytes reduces mitochondrial biogenesis but enhances glycolysis and basal glucose uptake. J. Cell. Mol. Med. 13, 3051–3060 (2009).

    Article  PubMed  Google Scholar 

  92. Siersbaek, R. et al. Molecular architecture of transcription factor hotspots in early adipogenesis. Cell Rep. 7, 1434–1442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Swinstead, E. E., Paakinaho, V. & Hager, G. L. Chromatin reprogramming in breast cancer. Endocr. Relat. Cancer 25, R385–R404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Miranda, T. B. et al. Reprogramming the chromatin landscape: interplay of the estrogen and glucocorticoid receptors at the genomic level. Cancer Res. 73, 5130–5139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Paakinaho, V., Kaikkonen, S., Makkonen, H., Benes, V. & Palvimo, J. J. SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res. 42, 1575–1592 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. West, D. C. et al. GR and ER coactivation alters the expression of differentiation genes and associates with improved ER+ breast cancer outcome. Mol. Cancer Res. 14, 707–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. West, D. C. et al. Discovery of a glucocorticoid receptor (GR) activity signature using selective GR antagonism in ER-negative breast cancer. Clin. Cancer Res. 24, 3433–3446 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Desvergne, B. RXR: from partnership to leadership in metabolic regulations. Vitam. Horm. 75, 1–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Yamamoto, A., Kakuta, H., Miyachi, H. & Sugimoto, Y. Involvement of the retinoid X receptor ligand in the anti-inflammatory effect induced by peroxisome proliferator-activated receptor γ agonist in vivo. PPAR Res. 2011, 840194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kadauke, S. & Blobel, G. A. Chromatin loops in gene regulation. Biochim. Biophys. Acta 1789, 17–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Bourgo, R. J., Singhal, H. & Greene, G. L. Capture of associated targets on chromatin links long-distance chromatin looping to transcriptional coordination. Nat. Commun. 7, 12893 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Siersbaek, R. et al. Dynamic rewiring of promoter-anchored chromatin loops during adipocyte differentiation. Mol. Cell 66, 420–435 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Yang, F. et al. Glucocorticoid receptor:MegaTrans switching mediates the repression of an ERα-regulated transcriptional program. Mol. Cell 66, 321–331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. de Vries Schultink, A. H. et al. An antiestrogenic activity score for tamoxifen and its metabolites is associated with breast cancer outcome. Breast Cancer Res. Treat. 161, 567–574 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Sundahl, N., Bridelance, J., Libert, C., De Bosscher, K. & Beck, I. M. Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol. Ther. 152, 28–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Deckers, J. et al. Co-activation of glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma in murine skin prevents worsening of atopic march. J. Investig. Dermatol. 138, 1360–1370 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Claessens, F., Joniau, S. & Helsen, C. Comparing the rules of engagement of androgen and glucocorticoid receptors. Cell. Mol. Life Sci. 74, 2217–2228 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Moehren, U., Denayer, S., Podvinec, M., Verrijdt, G. & Claessens, F. Identification of androgen-selective androgen-response elements in the human aquaporin-5 and Rad9 genes. Biochem. J. 411, 679–686 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, S., Wang, J., Yu, G., Liu, W. & Pearce, D. Androgen and glucocorticoid receptor heterodimer formation. A possible mechanism for mutual inhibition of transcriptional activity. J. Biol. Chem. 272, 14087–14092 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Spaanderman, D. C. E., et al. Androgens modulate glucocorticoid receptor activity in adipose tissue and liver. J. Endocrinol. 240, 51–63 (2019).

  111. Bledsoe, R. K. et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110, 93–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Bianchetti, L. et al. Alternative dimerization interfaces in the glucocorticoid receptor-α ligand binding domain. Biochim. Biophys. Acta. Gen. Subj. 1862, 1810–1825 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Puhr, M. et al. The glucocorticoid receptor is a key player for prostate cancer cell survival and a target for improved antiandrogen therapy. Clin. Cancer Res. 24, 927–938 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Savory, J. G. et al. Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces. Mol. Cell Biol. 21, 781–793 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kiilerich, P. et al. Interaction between the trout mineralocorticoid and glucocorticoid receptors in vitro. J. Mol. Endocrinol. 55, 55–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. van Steensel B. et al. Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. J. Cell Sci. 109, 787–792 (1996).

  117. Planey S. L., Derfoul A., Steplewski A., Robertson N. M., Litwack G. Inhibition of glucocorticoid-induced apoptosis in 697 pre-B lymphocytes by the mineralocorticoid receptor N-terminal domain. J. Biol. Chem. 277, 42188–42196 (2002).

  118. Mifsud, K. R. & Reul, J. M. Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus. Proc. Natl Acad. Sci. USA 113, 11336–11341 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rivers, C. A. et al. Glucocorticoid receptor-tethered mineralocorticoid receptors increase glucocorticoid-induced transcriptional responses. Endocrinology 160, 1044–1056 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Weikum, E. R., Knuesel, M. T., Ortlund, E. A. & Yamamoto, K. R. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 18, 159–174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Price, A. J., Manjegowda, M. C., Kain, J., Anandh, S. & Bochkis, I. M. Hdac3, Setdb1 and Kap1 mark H3K9me3/H3K14ac bivalent regions in young and aged liver. Aging Cell 19, e13092 (2019).

    PubMed  PubMed Central  Google Scholar 

  122. Lim, H. W. et al. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Res. 25, 836–844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Starick, S. R. et al. ChIP-exo signal associated with DNA-binding motifs provides insight into the genomic binding of the glucocorticoid receptor and cooperating transcription factors. Genome Res. 25, 825–835 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Song, J., Hao, Y., Du, Z., Wang, Z. & Ewing, R. M. Identifying novel protein complexes in cancer cells using epitope-tagging of endogenous human genes and affinity-purification mass spectrometry. J. Proteome Res. 11, 5630–5641 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lempiainen, J. K. et al. Agonist-specific protein interactomes of glucocorticoid and androgen receptor as revealed by proximity mapping. Mol. Cell. Proteomics 16, 1462–1474 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Giner, X. C., Cotnoir-White, D., Mader, S. & Levesque, D. Selective ligand activity at Nur/retinoid X receptor complexes revealed by dimer-specific bioluminescence resonance energy transfer-based sensors. FASEB J. 29, 4256–4267 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Miki, Y., Iwabuchi, E., Ono, K., Sasano, H. & Ito, K. Exploring protein–protein interaction in the study of hormone-dependent cancers. Int. J. Mol. Sci. 19, 3173 (2018).

  128. Dekker, J. The three ‘C’ s of chromosome conformation capture: controls, controls, controls. Nat. Methods 3, 17–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, X. et al. In situ capture of chromatin interactions by biotinylated dCas9. Cell 170, 1028–1043 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. van de Werken, H. J. et al. 4C technology: protocols and data analysis. Methods Enzymol. 513, 89–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, Z. et al. An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells. Genome Res. 29, 223–235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wierer, M. & Mann, M. Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes. Hum. Mol. Genet. 25, R106–R114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Blavnsfeldt, A. G. et al. The effect of glucocorticoids on bone mineral density in patients with rheumatoid arthritis: a systematic review and meta-analysis of randomized, controlled trials. Bone 114, 172–180 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Radhakutty, A. & Burt, M. G. Management of endocrine disease: critical review of the evidence underlying management of glucocorticoid-induced hyperglycaemia. Eur. J. Endocrinol. 179, R207–R218 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Narayanan, S., Srinivas, S. & Feldman, D. Androgen-glucocorticoid interactions in the era of novel prostate cancer therapy. Nat. Rev. Urol. 13, 47–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Desmet, S. J. & De Bosscher, K. Glucocorticoid receptors: finding the middle ground. J. Clin. Invest. 127, 1136–1145 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Della Torre, S. et al. Short-term fasting reveals amino acid metabolism as a major sex-discriminating factor in the liver. Cell Metab. 28, 256–267 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Maggi, A. & Della Torre, S. Sex, metabolism and health. Mol. Metab. 15, 3–7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rusai, K. et al. Gender differences in serum and glucocorticoid regulated kinase-1 (SGK-1) expression during renal ischemia/reperfusion injury. Cell. Physiol. Biochem. 27, 727–738 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Claessens, F. et al. Emerging mechanisms of enzalutamide resistance in prostate cancer. Nat. Rev. Urol. 11, 712–716 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Davies, A. H., Beltran, H. & Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15, 271–286 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Arora, V. K. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cecchin, E., De Mattia, E. & Toffoli, G. Nuclear receptors and drug metabolism for the personalization of cancer therapy. Expert Opin. Drug Metab. Toxicol. 12, 291–306 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Dhiman, V. K., Bolt, M. J. & White, K. P. Nuclear receptors in cancer – uncovering new and evolving roles through genomic analysis. Nat. Rev. Genet. 19, 160–174 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Meijer, F. A., Leijten-van de Gevel, I. A., de Vries, R. & Brunsveld, L. Allosteric small molecule modulators of nuclear receptors. Mol. Cell. Endocrinol. 485, 20–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Veras Ribeiro Filho, H. et al. Modulation of nuclear receptor function: targeting the protein-DNA interface. Mol. Cell. Endocrinol. 484, 1–14 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Moore, T. W., Mayne, C. G. & Katzenellenbogen, J. A. Minireview: Not picking pockets: nuclear receptor alternate-site modulators (NRAMs). Mol. Endocrinol. 24, 683–695 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Lee, Y. K., Dell, H., Dowhan, D. H., Hadzopoulou-Cladaras, M. & Moore, D. D. The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression. Mol. Cell. Biol. 20, 187–195 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Campos-Melo, D., Galleguillos, D., Sanchez, N., Gysling, K. & Andres, M. E. Nur transcription factors in stress and addiction. Front. Mol. Neurosci. 6, 44 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zheng, W. et al. Structural insights into the heterodimeric complex of the nuclear receptors FXR and RXR. J. Biol. Chem. 293, 12535–12541 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, Y. M., Ong, S. S., Chai, S. C. & Chen, T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin. Drug Metab. Toxicol. 8, 803–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Scheepstra, M. et al. Ligand dependent switch from RXR homo- to RXR-NURR1 heterodimerization. ACS Chem. Neurosci. 8, 2065–2077 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Hartig, S. M. et al. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes. Chem. Biol. 19, 1126–1141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hatano, Y. et al. Efficacy of combined peroxisome proliferator-activated receptor-α ligand and glucocorticoid therapy in a murine model of atopic dermatitis. J. Investig. Dermatol. 131, 1845–1852 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Panet-Raymond, V., Gottlieb, B., Beitel, L. K., Pinsky, L. & Trifiro, M. A. Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol. Cell. Endocrinol. 167, 139–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Lee, S. K., Choi, H. S., Song, M. R., Lee, M. O. & Lee, J. W. Estrogen receptor, a common interaction partner for a subset of nuclear receptors. Mol. Endocrinol. 12, 1184–1192 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Seol, W., Hanstein, B., Brown, M. & Moore, D. D. Inhibition of estrogen receptor action by the orphan receptor SHP (short heterodimer partner). Mol. Endocrinol. 12, 1551–1557 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. Giguere, V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr. Rev. 29, 677–696 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Johansson, L. et al. The orphan nuclear receptor SHP utilizes conserved LXXLL-related motifs for interactions with ligand-activated estrogen receptors. Mol. Cell Biol. 20, 1124–1133 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Klock, G., Strahle, U. & Schutz, G. Oestrogen and glucocorticoid responsive elements are closely related but distinct. Nature 329, 734–736 (1987).

    Article  CAS  PubMed  Google Scholar 

  162. Jia, X. C., Ny, T. & Hsueh, A. J. Synergistic effect of glucocorticoids and androgens on the hormonal induction of tissue plasminogen activator activity and messenger ribonucleic acid levels in granulosa cells. Mol. Cell. Endocrinol. 68, 143–151 (1990).

    Article  CAS  PubMed  Google Scholar 

  163. Herzog, B. et al. Estrogen-related receptor α is a repressor of phosphoenolpyruvate carboxykinase gene transcription. J. Biol. Chem. 281, 99–106 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank W. Zwart for his valuable comments on the technology-oriented perspectives section. The authors apologize to colleagues who made a contribution to the nuclear receptor heterodimer field, and whose valuable work we might have inadvertently overlooked or could not include due to space constraints. S.J.D. is supported by a BOF-UGent postdoctoral grant (2019–2021). L.B. is supported by the Dutch Ministry of Education, Culture and Science through the Gravity program (024.001.035). E.E.-P. is supported by the Spanish Ministry of Science (BFU2017-86906-R; SAF2017-71878-REDT), CaixaImpulse Programme-La Caixa (CI18-0018) and Generalitat of Catalunya AGAUR-FEDER-2018 LLAVOR-0003. K.D.B. is supported by FWO-Vlaanderen (G031016N, 1503718N) and VIB (C0301). D.C. is supported by a research project funded by “Stand up to Cancer” (Kom op tegen Kanker, STI.VLK.2018.0019.01).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Karolien De Bosscher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks the anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cistromes

A term derived from ‘cistr’ (from cistron) and ‘ome’ (from genome), and is defined as the set of cis-acting targets of a trans-acting factor on a genome-wide scale.

Squelching

The phenomenon of a competition between transcription factors for a limited amount of common interacting proteins in a cell, with the functional consequence that the transcription factors in a given cell interfere with the activity of each other.

Re-chromatin immunoprecipitation sequencing (ChIP-seq) analysis

A technique whereby specific protein-bound chromatin fragments are first enriched with an antibody against one transcription factor (for example, a nuclear receptor), after which this enriched fraction is used to immune-precipitate protein partners on specific DNA fragments via enrichment with a second antibody (for example, against a second nuclear receptor). Sequencing of the isolated DNA fragments reveals genome-wide binding sites for which heterodimer binding becomes more likely.

ChIPexo

A technique where exonuclease is used to trim pulled-down chromatin to reduce the chance of detecting nearby protein–DNA binding events in the absence of a physical interaction at the DNA response element of interest.

Interactomes

The whole set of molecular interactions in cells, more specifically, the physical interactions among molecules.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Bosscher, K., Desmet, S.J., Clarisse, D. et al. Nuclear receptor crosstalk — defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol 16, 363–377 (2020). https://doi.org/10.1038/s41574-020-0349-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-0349-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing