Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inheritance of arterial lesions in renal fibromuscular dysplasia

Abstract

We have previously shown that patients with renal fibromuscular dysplasia (FMD) have asymptomatic carotid lesions and that familial forms may occur. The objective of this study was to test whether carotid lesions could be detected in relatives of familial cases. High-resolution echotracking of the carotid artery was performed in 47 relatives of 13 cases from six families. This non-invasive investigation led to a semiquantitative arterial score that was compared with that obtained for 47 controls matched for age and sex and that for 125 sporadic cases. Familial resemblance was tested by using a generalized estimating equation approach taking into account the clustering of scores in families. As expected, FMD cases had a significantly higher score than controls (4.02 vs 2.52, P<10−5). Familial cases were not significantly different from sporadic cases. Of interest, the 47 apparently healthy relatives of familial cases had also a high carotid score (4.17), very significantly higher than that of controls (2.52, P<10−5) even though lower than the corresponding index FMD cases (4.81, P=0.01). Segregation analysis showed that 52% of the descendants of subjects with a score >4 had a score >4, a proportion consistent with autosomal-dominant transmission of the trait. Altogether these results strengthen the hypothesis of renal FMD being a systemic arterial disease and argue for a familial resemblance that may be due to a major genetic effect. The carotid score obtained by high-resolution echotracking may provide a non-invasive surrogate marker for renal FMD of potential value for use in linkage strategies on large pedigrees.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Stanley JC . Renal artery fibrodysplasia. In: Novick A, Scoble J, Hamilton G (eds). Renal Vascular Disease. Saunders: London, UK, 1996, pp 21–33.

    Google Scholar 

  2. Kincaid OW, Davis GD, Hallermann FJ, Hunt JC . Fibromuscular dysplasia of the renal arteries: arteriographic features, classification, and observations on natural history of the disease. Am J Roentgenol 1968; 104: 271–282.

    Article  CAS  Google Scholar 

  3. Luscher TF, Lie JT, Stanson AW, Houser OW, Hollier LH, Sheps SG . Arterial fibromuscular dysplasia. Mayo Clin Proc 1987; 62: 931–952.

    Article  CAS  PubMed Central  Google Scholar 

  4. Sang CN, Whelton PK, Hamper UM, Connolly M, Kadir S, White RI et al. Etiologic factors in renovascular fibromuscular dysplasia. Hypertension 1989; 14: 472–479.

    Article  CAS  PubMed Central  Google Scholar 

  5. Bofinger A, Hawley C, Fisher P, Daunt N, Stowasser M, Gordon R . Increased severity of multifocal renal arterial fibromuscular dysplasia in smokers. J Hum Hypertens 1999; 13: 517–520.

    Article  CAS  PubMed Central  Google Scholar 

  6. Pannier-Moreau I, Grimbert P, Fiquet-Kempf B, Vuagnat A, Jeunemaitre X, Corvol P et al. Possible familial origin of multifocal renal artery fibromuscular dysplasia. J Hypertens 1997; 15: 1797–1801.

    Article  CAS  PubMed Central  Google Scholar 

  7. Rushton AR . The genetics of fibromuscular dysplasia. Arch Intern Med 1980; 140: 233–236.

    Article  CAS  PubMed Central  Google Scholar 

  8. Gladstein K, Rushton AR, Kidd KK . Penetrance estimates and recurrence risks for fibromuscular dysplasia. Clin Genet 1980; 17: 115–116.

    Article  Google Scholar 

  9. Vasbinder GB, Nelemans PJ, Kessels AG, Kroon AA, Maki JH, Leiner T et al. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med 2004; 141: 674–682.

    Article  PubMed Central  Google Scholar 

  10. Boutouyrie P, Gimenez-Roqueplo AP, Fine E, Laloux B, Fiquet-Kempf B, Plouin PF et al. Evidence for carotid and radial artery wall subclinical lesions in renal fibromuscular dysplasia. J Hypertens 2003; 21: 2287–2295.

    Article  CAS  PubMed Central  Google Scholar 

  11. Hoeks AP, Willekes C, Boutouyrie P, Brands PJ, Willigers JM, Reneman RN . Automated detection of local artery wall thickness based on M-line signal processing. Ultrasound Med Biol 1997; 23: 1017–1023.

    Article  CAS  PubMed Central  Google Scholar 

  12. Liang KY, Zeger SL . Longitudinal analysis using generalized linear models. Biometrika 1986; 73: 13–22.

    Article  Google Scholar 

  13. Major P, Genest J, Cartier P, Kuchel O . Hereditary fibromuscular dysplasia with renovascular hypertension. Ann Intern Med 1977; 86: 583.

    Article  CAS  PubMed Central  Google Scholar 

  14. Morimoto S, Kuroda M, Uchida K, Funatsu T, Yamamoto I, Hashiba T et al. Occurrence of renovascular hypertension in two sisters. Nephron 1976; 17: 314–320.

    Article  CAS  PubMed Central  Google Scholar 

  15. Bigazzi R, Bianchi S, Quilici N, Salvadori R, Baldari G . Bilateral fibromuscular dysplasia in identical twins. Am J Kidney Dis 1998; 32: E4.

    Article  CAS  PubMed Central  Google Scholar 

  16. Halpern MH, Sanford HS, Viamonte Jr M . Penetrance estimates and recurrence risks for fibromuscular hyperplasia of the renal arteries. Acta Med Scand 1965; 194: 512–513.

    CAS  Google Scholar 

  17. Schievink WI, Wijdicks EF, Michels VV, Vockley J, Godfrey M . Heritable connective tissue disorders in cervical artery dissections: a prospective study. Neurology 1998; 50: 1166–1169.

    Article  CAS  PubMed Central  Google Scholar 

  18. Mitchell GF, DeStefano AL, Larson MG, Benjamin EJ, Chen MH, Vasan RS et al. Heritability and a genome-wide linkage for arterial stiffness, wave reflection, and mean arterial pressure. The Framingham Heart Study. Circulation 2005; 112: 194–199.

    Article  Google Scholar 

  19. Jondeau G, Boutouyrie P, Lacolley P, Laloux B, Bourdarias JP, Laurent S . Central pulse pressure is a major determinant of ascending aorta dilatation in Marfan syndrome. Circulation 1999; 99: 2677–2681.

    Article  CAS  Google Scholar 

  20. Boutouyrie P, Germain DP, Fiessinger JN, Laloux B, Perdu J, Laurent S . Increased carotid wall stress in vascular Ehlers–Danlos syndrome. Circulation 2004; 109: 1530–1535.

    Article  PubMed Central  Google Scholar 

  21. Laurent S, Boutouyrie P, Lacolley P . Structural and genetic bases of arterial stiffness. Hypertension 2005; 45: 1050–1055.

    Article  CAS  Google Scholar 

  22. Johansson M, Jensen G, Aurell M, Friberg P, Herlitz H, Klingenstierna H et al. Evaluation of duplex ultrasound and captopril renography for detection of renovascular hypertension. Kidney Int 2000; 58: 774–782.

    Article  CAS  PubMed Central  Google Scholar 

  23. Claudon M, Plouin PF, Baxter GM, Rohban T, Devos DM . Renal arteries in patients at risk of renal arterial stenosis: multicenter evaluation of the echo-enhancer SH U 508A at color and spectral Doppler US. Levovist Renal Artery Stenosis Study Group. Radiology 2000; 214: 730–746.

    Article  Google Scholar 

  24. Cragg AH, Smith TP, Thomson BH, Maroney TP, Stanson AW, Shaw GT et al. Incidental fibromuscular dysplasia in potential renal donors: long-term clinical follow-up. Radiology 1989; 172: 145–147.

    Article  CAS  PubMed Central  Google Scholar 

  25. Reich SB, Riley III JC, Christopher RA, Walker LA, Everitt JH . Changes in the pulse wave form with flow through vessels with repetitive saccular dilatations and stenosis. Invest Radiol 1975; 10: 622–626.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was sponsored by funds from INSERM (Institut National de la Santé et de la Recherche Médicale), Assistance Publique - Hôpitaux de Paris Association Naturalia and Biologia, Agence Nationale pour la Recherche (ANR) and from the Programme National de Recherche Cardiovasculaire (PNRC). Jérôme Perdu holds grants from the Fondation pour la Recherche Médicale (FRM), the Fond d’Études et de Recherche du Corps Médical (FERCM) of Assistance Publique – Hôpitaux de Paris, the Société Française d’Hypertension Artérielle (SFHTA) and received the Société Française de Cardiologie (SFC) and Pfizer laboratories Award. We thank the technical staff of the laboratory of Molecular Genetics and the Clinical Investigation Center at HEGP and Julie Sappa for editing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Perdu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perdu, J., Boutouyrie, P., Bourgain, C. et al. Inheritance of arterial lesions in renal fibromuscular dysplasia. J Hum Hypertens 21, 393–400 (2007). https://doi.org/10.1038/sj.jhh.1002156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1002156

Keywords

This article is cited by

Search

Quick links