Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38

Abstract

The Sterile-20 or Ste20 family of serine/threonine kinases is a group of signaling molecules whose physiological roles within mammalian cells are just starting to be elucidated. Here, in this report we present the characterization of three human Ste20-like kinases with greater than 90% similarity within their catalytic domains that define a novel subfamily of Ste20s. Members of this kinase family include rat thousand and one (TAO1) and chicken KFC (kinase from chicken). For the lack of a consensus nomenclature in the literature, in this report, we shall call this family hKFC (for their homology to chicken KFC) and the three members hKFC-A, hKFC-B, and hKFC-C, respectively. These kinases have many similarities including an aminoterminal kinase domain, a serine-rich region, and a coiled-coil configuration within the C-terminus. All three kinases are able to activate the p38 MAP kinase pathway through the specific activation of the upstream MKK3 kinase. We also offer evidence, both theoretical and biochemical, showing that these kinases can undergo self-association. Despite these similarities, these kinases differ in tissue distribution, apparent subcellular localization, and feature structural differences largely within the carboxyl-terminal sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ASK1:

apoptosis signal-regulating kinase 1

CRIB:

Cdc42/Rac1 interactive-binding domain

EGF:

epidermal growth factor

ER:

endoplasmic reticulum

ERK:

extracellular signal-regulated kinase

FITC:

fluorescein isothiocyanate

GCK:

germinal center kinase

GST:

glutathione S-transferase

HA:

hemagglutinin

HRP:

horseradish peroxidase

IL-1β:

interleukin-1β

KFC:

kinase from chicken

LFA:

leukocyte-function-associated antigen

MAPK:

mitogen-activated protein kinase

MBP:

myelin basic protein

MEK/MKK:

MAPK kinase

MEKK:

MEK-kinase

MLK:

mixed-lineage kinase

MST1:

mammalian Ste20

MTK1:

MAP three kinase 1

p38/mHOG:

mammalian high-osmolarity glycerol kinase

PAGE:

polyacrylamide gel electrophoresis

PAK:

p21-activated kinase

PBL:

peripheral blood leukocytes

PDGF:

platelet-derived growth factor

PSK:

prostate-specific kinase

RACE:

rapid amplification of cDNA ends

SAPK/JNK:

stress-activated protein kinase/jun N-terminal kinase

SH3:

src-homology 3

Ste20:

sterile-20

TAK1:

TGF-β-activated kinase 1

TAO1:

thousand and one protein kinase

TGF-β:

transforming growth factor-β

TNF-α:

tumor necrosis factor-α

UV:

ultraviolet

References

  • Assefa Z, Garmyn M, Bouillon R, Merlevede W, Vandenheede JR and Agonstinis P . (1997). J. Invest. Dermatol., 108, 886–891.

  • Becker E, Huynh-Do U, Holland S, Pawson T, Daniel TO and Skolnick EY . (2000). Mol. Cell. Biol., 20, 1537–1545.

  • Bost F, McKay R, Bost M, Potapova O, Dean NM and Mercola D . (1999). Mol. Cell. Biol., 19, 1938–1949.

  • Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH and Yancopoulos GD . (1991). Cell, 65, 663–675.

  • Brown JL, Stowers L, Baer M, Trejo J, Coughlin S and Chant J . (1996). Curr. Biol., 6, 598–605.

  • Charest DL, Mordret G, Harder KW, Jirik F and Pelech SL . (1993). Mol. Cell. Biol., 13, 4679–4690.

  • Chen Z, Hutchison M and Cobb MH . (1999). J. Biol. Chem., 274, 28803–28807.

  • Chung CY and Firtel RA . (1999). J. Cell Biol., 147, 559–576.

  • Creasy CL and Chernoff J . (1995a). Gene, 167, 303–306.

  • Creasy CL and Chernoff J . (1995b). J. Biol. Chem., 270, 21695–21700.

  • Dan I, Watanabe NM, Kobayashi T, Yamashita-Suzuki K, Fukagaya Y, Kajikawa E, Kimura WK, Nakashima TM, Matsumoto K, Ninomiya-Tsuji J and Kusumi A . (2000). FEBS Lett., 469, 19–23.

  • Dan I, Watanabe NM and Kusumi A . (2001). Trends Cell Biol., 11, 220–230.

  • Eby JJ, Holly SP, van Drogen F, Grishin AV, Peter M, Drubin DG and Blumer KJ . (1998). Curr. Biol., 8, 967–970.

  • Endo J, Toyama-Sorimachi N, Taya C, Kuramochi-Miyagawa S, Nagata K, Kuida K, Takashi T, Yonekawa H, Yoshizawa Y, Miyasaka N and Karasuyama H . (2000). FEBS Lett., 468, 234–238.

  • Enslen H, Brancho DM and Davis RJ . (2000). EMBO J., 19, 1301–1311.

  • Fanger GR, Gerwins P, Widmann C, Jarpe MB and Johnson GL . (1997). Curr. Opin. Genet. Dev., 7, 67–74.

  • Frost JA, Xu S, Hutchison MR, Marcus S and Cobb MH . (1996). Mol. Cell. Biol., 16, 3707–3713.

  • Geng Y, Valbracht J and Lotz M . (1996). J. Clin. Invest., 98, 2425–2430.

  • Holly SP and Blumer KJ . (1999). J. Cell Biol., 147, 845–856.

  • Hu MC, Qiu WR, Wang X, Meyer CF and Tan TH . (1996). Genes Dev., 10, 2251–2264.

  • Hutchison M, Berman KS and Cobb MH . (1998). J. Biol. Chem., 273, 28625–28632.

  • Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K and Gotoh Y . (1997). Science, 275, 90–94.

  • Katz P, Whalen G and Kerhl JH . (1994). J. Biol. Chem., 269, 16802–16809.

  • Kyriakis JM and Avruch J . (1996). Bioessays, 18, 567–577.

  • Ling P, Meyer CF, Redmond LP, Shui JW, Davis B, Rich RR, Hu MC, Wange RL and Tan TH . (2001). J. Biol. Chem., 276, 18908–18914.

  • Ling P, Yao Z, Meyer CF, Wang XS, Oehrl W, Feller SM and Tan TH . (1999). Mol. Cell. Biol., 19, 1359–1368.

  • Lu HT, Yang DD, Wysk M, Gatti E, Mellman I, Davis RJ and Flavell RA . (1999). EMBO J., 18, 1845–1857.

  • Lupas A, Van Dyke M and Stock J . (1991). Science, 252, 1162–1164.

  • Manser E, Leung T, Salihuddin H, Zhao ZS and Lim L . (1994). Nature, 367, 40–46.

  • Moore TM, Garg R, Johnson C, Coptcoat MJ, Ridley AJ and Morris JD . (2000). J. Biol. Chem., 275, 4311–4322.

  • Moriguchi T, Kuroyanagi N, Yamaguchi K, Gotoh Y, Irie K, Kano T, Shirkabe K, Muro Y, Shibuya H, Matsumoto K, Nishida E and Hagiwara M . (1996). J. Biol. Chem., 271, 13675–13679.

  • Oehrl W, kardinal C, Ruf S, Adermann K, Groffen J, Feng GS, Blenis J, Tan TH and Feller SM . (1998). Oncogene, 17, 1893–1901.

  • Parrini MC, Lei M, Harrison SC and Mayer BJ . (2002). Mol. Cell, 9, 73–83.

  • Paul A, Wilson S, Belham CM, Robinson CJ, Scott PH, Gould GW and Plevin R . (1997). Cell Signal, 9, 403–410.

  • Peraldi P, Scimeca JC, Filloux C and Van Obberghen E . (1993). Endocrinology, 132, 2578–2585.

  • Pombo CM, Kehrl JH, Sanchez I, Katz P, Avruch J, Zon LI, Woodgett JR, Force T and Kyriakis JM . (1995). Nature, 377, 750–754.

  • Rousseau S, Houle F, Landry J and Huot J . (1997). Oncogene, 15, 2169–2177.

  • Su YC, Han J, Xu S, Cobb M and Skolnik EY . (1997). EMBO J., 16, 1270–1290.

  • Takekawa M, Posas F and Saito H . (1997). EMBO J., 16, 4973–4982.

  • Tassi E, Biesova Z, Di Force PP, Gutkind JS and Wong WT . (1999). J. Biol. Chem., 274, 33287–33295.

  • Tibbles LA, Ing YL, Kiefer F, Chan J, Iscove N, Woodgett JR and Lassam NJ . (1996). EMBO J., 15, 7026–7035.

  • Wolf E, Kim PS and Berger B . (1997). Protein Sci., 6, 1179–1189.

  • Wysk M, Yang DD, Lu HT, Flavell RA and Davis RJ . (1999). Proc. Natl. Acad. Sci. USA, 96, 3763–3768.

  • Xing J, Kornhauser JM, Xia Z, Thiele EA and Greenberg ME . (1998). Mol. Cell. Biol., 18, 1946–1955.

  • Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T and Tohyama M . (2001). J. Biol. Chem., 276, 13935–13940.

  • Yustein JT, Li D, Robinson D and Kung HJ . (2000). Oncogene, 19, 710–718.

  • Zanke BW, Boudreau K, Rubie E, Winnett E, Tibbles LA, Zon L, Kyriakis J, Liu FF and Woodgett JR . (1996a). Curr. Biol., 6, 606–613.

  • Zanke BW, Rubie EA, Winnett E, Chan J, Randall S, Parsons M, Boudreau K, McInnis M, Yan M, Templeton DJ and Woodgett JR . (1996b). J. Biol. Chem., 271, 29876–29881.

  • Zhou G, Lee SC, Yao Z and Tan TH . (1999). J. Biol. Chem., 274, 13133–13138.

Download references

Acknowledgements

We thank Dr Ichijo (Tokyo Medical and Dental University) for providing the HA-tagged ASK1 clone. This work is supported by NIH grants (CA39207, CA46613 and CA57179) and a DOD prostate cancer grant (DAMD17-02-1-0020) to HJK JTY is supported through the NIH-supported Medical Scientist Training Program. We also acknowledge the support of Cancer Center Core Grant to UC Davis and the Environmental Health Science Center Grant to UC Davis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsing-Jien Kung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yustein, J., Xia, L., Kahlenburg, J. et al. Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38. Oncogene 22, 6129–6141 (2003). https://doi.org/10.1038/sj.onc.1206605

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206605

Keywords

This article is cited by

Search

Quick links