Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Src kinase potentiates androgen receptor transactivation function and invasion of androgen-independent prostate cancer C4-2 cells

Abstract

Prostate cancer is one of the most prominent malignancies of elderly men in many Western countries including Europe and the United States with increasing trend worldwide. The growth of normal prostate as well as of prostate carcinoma cells depends on functional androgen receptor (AR) signaling. AR manifests the biological actions of androgens and its transcriptional activity is known to be influenced by signal transduction pathways. Here we show that Src, a nonreceptor tyrosine kinase, is overexpressed in androgen-independent prostate carcinoma C4-2 cells. Interestingly, the expression of Src was found to progressively increase (up to threefold) in transgenic adenocarcinoma of mouse prostate mice as a function of age and cancer progression. Blocking Src kinase function by a specific inhibitor, PP2, resulted in decreased AR transactivation function on two different reporters, mouse mammary tumor virus (MMTV) and prostate-specific antigen (PSA). Consistent with this, overexpression of a functional Src mutant also led to a dramatic decrease in AR transactivation potential in a hormone-dependent manner. Interference with Src function in C4-2 cells led to decreased recruitment of AR on the target gene PSA enhancer and also resulted in the abrogation of hormone-dependent PSA transcript induction. Src inhibition also led to a dramatic decrease in the cell invasion in addition to decreasing the cellular growth. We suggest that targeting Src kinase could be an effective strategy to inhibit prostate cancer growth and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abreu-Martin MT, Chari A, Palladino AA, Craft NA, Sawyers CL . (1999). Mitogen activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol Cell Biol 19: 5143–5154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adhami VM, Siddiqui IA, Ahmad N, Gupta S, Mukhtar H . (2004). Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res 64: 8715–8722.

    Article  CAS  PubMed  Google Scholar 

  • Baniahmad A . (2005). Nuclear hormone receptor co-repressors. J Steroid Biochem Mol Biol 93: 89–97.

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann AO, Jenster G, Kuiper GG, Ris C, van Laar JH, van der Korput JA et al. (1992). The human androgen receptor: structure/function relationship in normal and pathological situations. J Steroid Biochem Mol Biol 41: 361–368.

    Article  CAS  PubMed  Google Scholar 

  • Castoria G, Lombardi M, Barone MV . (2003). Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action. J Cell Biol 161: 547–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat Med 10: 33–39.

    Article  PubMed  Google Scholar 

  • Chen S, Song CS, Lavrovsky Y, Bi B, Vellanoweth R, Chatterjee B et al. (1998). Catalytic cleavage of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme. Mol Endocrinol 12: 1558–1566.

    Article  CAS  PubMed  Google Scholar 

  • Craft N, Shostak Y, Carey M, Sawyers CL . (1999). A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER2/neu tyrosine kinase. Nat Med 5: 280–285.

    Article  CAS  PubMed  Google Scholar 

  • Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A et al. (1994). Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54: 5474–5478.

    CAS  PubMed  Google Scholar 

  • Dehm SM, Tindall DJ . (2007). Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 21: 2855–2863.

    Article  CAS  PubMed  Google Scholar 

  • Dotzlaw H, Moehren U, Mink S, Cato AC, Iniguez Lluhi JA, Baniahmad A . (2002). The amino terminus of the human AR is target for corepressor action and antihormone agonism. Mol Endocrinol 16: 661–673.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO et al. (1995). Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92: 3439–3443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Dai B, Jiang T, Xu K, Xie Y, Kim O et al. (2006). Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 10: 309–319.

    Article  CAS  PubMed  Google Scholar 

  • Haag P, Bektic J, Bartsch G, Klocker H, Eder IE . (2005). Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen-independent prostate cancer cells. J Steroid Biochem Mol Biol 96: 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Isaacs JT . (2000). Apoptosis: translating theory to therapy for prostate cancer. J Natl Cancer Inst 92: 1367–1369.

    Article  CAS  PubMed  Google Scholar 

  • Jenster G . (2000). Ligand-independent activation of the androgen receptor in prostate cancer by growth factors and cytokines. J Pathol 191: 227–228.

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Coetzee GA . (2005). Androgen receptor-dependent PSA expression in androgen-independent prostate cancer cells does not involve androgen receptor occupancy of the PSA locus. Cancer Res 65: 8003–8008.

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Tang S, Thrasher JB, Griebling TL, Li B . (2005). Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol Cancer Ther 4: 505–515.

    Article  CAS  PubMed  Google Scholar 

  • Moehren U, Papaioannou M, Reeb CA, Hong W, Baniahmad A . (2007). Alien interacts with the human androgen receptor and inhibits prostate cancer cell growth molecular endocrinology. Mol Endocrinol 21: 1039–1048.

    Article  CAS  PubMed  Google Scholar 

  • Notini AJ, Davey RA, McManus JF, Bate KL, Zajac JD . (2005). Genomic actions of the androgen receptor are required for normal male sexual differentiation in a mouse model. J Mol Endocrinol 35: 547–555.

    Article  CAS  PubMed  Google Scholar 

  • Perry JE, Grossmann ME, Tindall DJ . (1996). Androgen regulation of gene expression. Prostate Suppl 6: 79–81.

    Article  CAS  PubMed  Google Scholar 

  • Peterziel H, Mink S, Schonert A, Becker M, Klocker H, Cato AC . (1999). Rapid signalling by androgen receptor in prostate cancer cells. Oncogene 18: 6322–6329.

    Article  CAS  PubMed  Google Scholar 

  • Sadar MD . (1999). Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways. J Biol Chem 274: 7777–7783.

    Article  CAS  PubMed  Google Scholar 

  • Shah YM, Rowan BG . (2005). The Src kinase pathway promotes tamoxifen agonist action in Ishikawa endometrial cells through phosphorylation-dependent stabilization of estrogen receptor (alpha) promoter interaction and elevated steroid receptor coactivator 1 activity. Mol Endocrinol 19: 732–748.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui IA, Zaman N, Aziz MH, Reagan-Shaw SR, Sarfaraz S, Adhami VM et al. (2006). Inhibition of CWR22Rnu1 tumor growth and PSA secretion in athymic nude mice by green and black teas. Carcinogenesis 27: 833–839.

    Article  CAS  PubMed  Google Scholar 

  • Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL et al. (1994). Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 54: 2577–25781.

    CAS  PubMed  Google Scholar 

  • Thalmann GN, Sikes RA, Wu TT, Degeorges A, Chang SM, Ozen M et al. (2000). LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 44: 91–103.

    Article  CAS  PubMed  Google Scholar 

  • Ueda T, Mawji NR, Bruchovsky N, Sadar MD . (2002). Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem 277: 38087–38094.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Hsu CL, Ni J, Wang PH, Yeh S, Keng P, Chang C . (2004). Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells. Mol Cell Biol 24: 2202–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young CY, Andrews PF, Montgomery BT, Tindall DJ . (1992). Tissue-specific and hormonal regulation of human prostate-specific glandular kallikrein. Biochemistry 31: 818–824.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr GP Reddy for gift of Casodex, Dr GN Thalmann for providing C4-2 cells and Dr Sarah Courtneidge for mammalian expression vectors of wt and mutant Src. This work was supported by US PHS Grants RO1CA78809; RO1CA101039, RO1CA120451 and O'Brian center Grant P50DK065303-01 to HM and Association of International Cancer research (AICR, UK) and DFG-BA1457/3 grant to AB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Baniahmad or H Mukhtar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asim, M., Siddiqui, I., Hafeez, B. et al. Src kinase potentiates androgen receptor transactivation function and invasion of androgen-independent prostate cancer C4-2 cells. Oncogene 27, 3596–3604 (2008). https://doi.org/10.1038/sj.onc.1211016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211016

Keywords

This article is cited by

Search

Quick links