Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Common allelic variants of the farnesyl diphosphate synthase gene influence the response of osteoporotic women to bisphosphonates

Abstract

Farnesyl diphosphate synthase (FDPS) is necessary for osteoclast survival and activity and is considered as a major molecular target of aminobisphosphonates. Our objective was to analyze the influence of FDPS polymorphisms on bone mineral density (BMD) and the response to antiresortive drugs. Three single-nucleotide polymorphisms of FDPS were analyzed in 1186 postmenopausal women. There was only a marginally significant association of baseline hip BMD with rs11264359 alleles (P=0.043). However, among 191 women receiving antiresortive therapy, there was a very significant association between rs2297480 or rs11264359 alleles and the BMD changes after aminobisphosphonate therapy for an average period of 2.5 years (P=0.001). The genotype explained 7.2% of the variance in the BMD response. On the other hand, there was no association between the BMD changes after raloxifene therapy and any of the polymorphisms studied. These results suggest that common polymorphisms of the FDPS gene influence the response to aminobisphosphonates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Melton LJ . How many women have osteoporosis now? J Bone Miner Res 1995; 10: 175–177.

    Article  PubMed  Google Scholar 

  2. Favus MJ . Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 6th edn. Lippincott Williams & Wilkins: Philadelphia, 2006.

    Google Scholar 

  3. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK . Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene. Results from a 3-year randomized clinical trial. JAMA 1999; 282: 637–645.

    Article  CAS  PubMed  Google Scholar 

  4. Kanis JA, Johnell O, Black DM, Downs Jr RW, Sarkar S, Fuerst T et al. Effect of raloxifene on the risk of new vertebral fracture in postmenopausal women with osteopenia or osteoporosis: a reanalysis of the Multiple Outcomes of Raloxifene Evaluation trial. Bone 2003; 33: 293–300.

    Article  CAS  PubMed  Google Scholar 

  5. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 1996; 348: 1535–1541.

    Article  CAS  Google Scholar 

  6. Karpf DB, Shapiro DR, Seeman E, Ensrud KE, Jonhston CC, Adami S et al. Prevention of nonvertebral fractures by alendronate. A meta-analysis. JAMA 1997; 277: 1159–1164.

    Article  CAS  PubMed  Google Scholar 

  7. Schnitzer T, Bone HG, Crepaldi G, Adami S, McClung M, Kiel D et al. Therapeutic equivalence of alendronate 70 mg once-weekly and alendronate 10 mg daily in the treatment of osteoporosis. Alendronate Once-Weekly Study Group. Aging (Milano) 2000; 12: 1–12.

    CAS  Google Scholar 

  8. Brown JP, Kendler DL, McClung M, Emkey RD, Adachi JD, Bolognese MA et al. The efficacy and tolerability of risedronate once a week for the treatment of postmenopausal osteoporosis. Calcif Tissue Int 2002; 71: 103–111.

    Article  CAS  PubMed  Google Scholar 

  9. Fogelman I, Ribot C, Smith R, Ethgen D, Sod E, Reginster JY . Risedronate reverses bone loss in postmenopausal women with low bone mass: results from a multinational, double-blind, placebo-controlled trial. BMD-MN Study Group. J Clin Endocrinol Metab 2000; 85: 1895–1900.

    CAS  PubMed  Google Scholar 

  10. Body JJ, Bergmann P, Boonen S, Boutsen Y, Devogelaer JP, Goemaere S et al. Evidence-based guidelines for the pharmacological treatment of postmenopausal osteoporosis: a consensus document by the Belgian Bone Club. Osteoporos Int 2010; 21: 1657–1680.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Coxon FP, Thompson K, Rogers MJ . Recent advances in understanding the mechanism of action of bisphosphonates. Curr Opin Pharmacol 2006; 6: 307–312.

    Article  CAS  PubMed  Google Scholar 

  12. Russell RG, Watts NB, Ebetino FH, Rogers MJ . Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 2008; 19: 733–759.

    Article  CAS  PubMed  Google Scholar 

  13. von Knoch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I et al. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials 2005; 26: 6941–6949.

    Article  CAS  PubMed  Google Scholar 

  14. Riancho JA, Zarrabeitia MT, Gonzalez-Macias J . Genetics of osteoporosis. Aging Health 2008; 4: 365–376.

    Article  CAS  Google Scholar 

  15. Richards JB, Kavvoura FK, Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 2009; 151: 528–537.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gennari L . Pharmacogenomics of osteoporosis. Clin Rev Bone Miner Metab 2010; 8: 77–94.

    Article  CAS  Google Scholar 

  17. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  18. Conde L, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J, Rousseau F et al. PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res 2006; 34: W621–W625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reumers J, Conde L, Medina I, Maurer-Stroh S, Van Durme J, Dopazo J et al. Joint annotation of coding and non-coding single nucleotide polymorphisms and mutations in the SNPeffect and PupaSuite databases. Nucleic Acids Res 2008; 36: D825–D829.

    Article  CAS  PubMed  Google Scholar 

  20. Emaus N, Berntsen GK, Joakimsen RM, Fonnebo V . Longitudinal changes in forearm bone mineral density in women and men aged 25–44 years: the Tromso study: a population-based study. Am J Epidemiol 2005; 162: 633–643.

    Article  CAS  PubMed  Google Scholar 

  21. Ishani A, Blackwell T, Jamal SA, Cummings SR, Ensrud KE . The effect of raloxifene treatment in postmenopausal women with CKD. J Am Soc Nephrol 2008; 19: 1430–1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ralston SH . Osteoporosis as an hereditary disease. Clin Rev Bone Miner Metab 2010; 8: 68–76.

    Article  CAS  Google Scholar 

  23. Hernandez JL, Riancho JA . Pharmacogenomics of osteoporosis. Curr Pharmacogenom 2007; 5: 214–227.

    Article  CAS  Google Scholar 

  24. Kruk M, Ralston SH, Albagha OM . LRP5 polymorphisms and response to risedronate treatment in osteoporotic men. Calcif Tissue Int 2009; 84: 171–179.

    Article  CAS  PubMed  Google Scholar 

  25. Levy ME, Parker RA, Ferrell RE, Zmuda JM, Greenspan SL . Farnesyl diphosphate synthase: a novel genotype association with bone mineral density in elderly women. Maturitas 2007; 57: 247–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marini F, Falchetti A, Silvestri S, Bagger Y, Luzi E, Tanini A et al. Modulatory effect of farnesyl pyrophosphate synthase (FDPS) rs2297480 polymorphism on the response to long-term amino-bisphosphonate treatment in postmenopausal osteoporosis. Curr Med Res Opin 2008; 24: 2609–2615.

    Article  CAS  PubMed  Google Scholar 

  27. Choi HJ, Choi JY, Cho SW, Kang D, Han KO, Kim SW et al. Genetic polymorphism of geranylgeranyl diphosphate synthase (GGSP1) predicts bone density response to bisphosphonate therapy in Korean women. Yonsei Med J 2010; 51: 231–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adami S, Giannini S, Bianchi G, Sinigaglia L, Di Munno O, Fiore CE et al. Vitamin D status and response to treatment in post-menopausal osteoporosis. Osteoporos Int 2009; 20: 239–244.

    Article  CAS  PubMed  Google Scholar 

  29. Epstein S . The roles of bone mineral density, bone turnover, and other properties in reducing fracture risk during antiresorptive therapy. Mayo Clin Proc 2005; 80: 379–388.

    Article  PubMed  Google Scholar 

  30. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, Lacroix AZ et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 2002; 112: 281–289.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Fundación Areces. CS has a fellowship of the Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV) and the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Riancho.

Ethics declarations

Competing interests

JMO, JLH, JGM and JAR have received research support, travel reimbursements or lecture fees from MSD, Servier, Lilly, Amgen, Procter & Gamble, Nycomed and Novartis. MTZ and CS have no conflict of interest to declare.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmos, J., Zarrabeitia, M., Hernández, J. et al. Common allelic variants of the farnesyl diphosphate synthase gene influence the response of osteoporotic women to bisphosphonates. Pharmacogenomics J 12, 227–232 (2012). https://doi.org/10.1038/tpj.2010.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.88

Keywords

This article is cited by

Search

Quick links