Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration

Abstract

The inability to deliver growth factors locally in a transient but sustained manner is a substantial barrier to tissue regeneration. Systems capable of localized plasmid gene delivery for prolonged times may offer lower toxicity and should be well-suited for growth factor therapeutics. We investigated the potency of plasmid gene delivery from genes physically entrapped in a polymer matrix (gene activated matrix) using bone regeneration as the endpoint in vivo. Implantation of gene activated matrices at sites of bone injury was associated with retention and expression of plasmid DNA for at least 6 weeks, and with the induction of centimeters of normal new bone in a stable, reproducible, dose- and time-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct in vivo plasmid gene transfer.
Figure 2: Bone formation dose-response: part 1.
Figure 3: Bone formation dose–response: part 2.
Figure 4: Histology.
Figure 5: Histology and immunohistochemistry of cartilage callus.
Figure 6: Local recombinant protein and plasmid gene delivery in tissue repair and regeneration.

Similar content being viewed by others

References

  1. Abraham, J.A. & Klagsbrun, M. in The Molecular and Cellular Biology of Wound Repair (ed. Clark, R.A.F.) 195– 248 (Plenum, New York, 1996).

    Google Scholar 

  2. Langer, R. Drug delivery and targeting. Nature 392 (suppl.), 5–10 (1998).

    CAS  PubMed  Google Scholar 

  3. Bartus, R.T., Tracy, M.A., Emerich, D.F. & Zale, S.E. Sustained delivery of proteins for novel therapeutic products. Science 281, 1161–1162 (1998).

    Article  CAS  Google Scholar 

  4. Terrell, T.G., Working, P.K., Chow, C.P. & Green, J.D. Pathology of recombinant human transforming growth factor-β1 in rats and rabbits. Int Rev. Exp. Pathol. 34B, 43–67 (1993).

    Article  Google Scholar 

  5. Shea, L.D., Smiley, E., Bonadio, J. & Mooney, D.J. Controllable DNA delivery from three-dimensional polymer matrices. Nature Biotechnol. 17, 551–554 (1999).

    Article  CAS  Google Scholar 

  6. Lew, D. et al. Cancer gene therapy using plasmid DNA: Pharmacokinetic study of DNA following injection in mice. Hum. Gene Therapy 6, 553–564 (1995).

    Article  CAS  Google Scholar 

  7. Schleef, M. in Biotechnology (eds. Rehm, H-J., and Reed, G.) 443– 469 (Wiley-VCH, Weinheim, FRG, 1999).

    Google Scholar 

  8. Parker, S.E. et al. Cancer gene therapy using plasmid DNA: Safety evaluation in rodents and non-human primates. Hum. Gene Therapy 6, 575–590 (1995).

    Article  CAS  Google Scholar 

  9. Urist, M. Bone: Formation by autoinduction. Science 150, 893–899 (1965).

    Article  CAS  Google Scholar 

  10. Fang, J. et al. Stimulation of new bone formation by direct transfer of osteoinductive plasmid genes. Proc. Natl. Acad. Sci. USA 93, 5753–5758 (1996).

    Article  CAS  Google Scholar 

  11. Langer, R. & Vacanti, J.P. Tissue engineering. Science 260, 920–925 (1993).

    Article  CAS  Google Scholar 

  12. Verma, I.M. & Somia, N. Gene therapy—promises, problems and prospects. Nature 389, 239– 242 (1997).

    Article  CAS  Google Scholar 

  13. Kay, M.A., Liu, D. & Hoogerbrugge, P.M. Gene therapy. Proc. Natl. Acad. Sci. USA 94, 12744–12746 (1997).

    Article  CAS  Google Scholar 

  14. Feldman, A.M. & Lee, J.S. Gene therapy for therapeutic myocardial angiogenesis: A promising synthesis of two emerging technologies. Nature Med. 4, 739–742 (1998).

    Article  Google Scholar 

  15. Martin, P. Wound healing—aiming for perfect skin. Science 276, 75–81 (1997).

    Article  CAS  Google Scholar 

  16. Bonadio, J., Goldstein, S.A., and Levy, R.J. (1998) Gene therapy for tissue repair and regeneration. Adv. Drug Delivery Rev. 33, 53–69.

    Article  CAS  Google Scholar 

  17. Giannobile, W.V. Periodontal tissue engineering by growth factors. Bone 19 (1 Suppl), 23S–37S (1996).

    Article  CAS  Google Scholar 

  18. Singh, R.H. & Udupa, K.N. Studies on the effect of parathormone and vitamin D in healing of fractures. Indian J. Med. Res. 54, 872–880 (1966).

    CAS  PubMed  Google Scholar 

  19. Parsons, J.A & Reit, B. Chronic response of dogs to parathyroid hormone infusion. Nature 250, 254– 257 (1974).

    Article  CAS  Google Scholar 

  20. Gunness-Hey, M. & Hock, J.M. Loss of the anabolic effect of parathyroid hormone on bone after discontinuation of hormone in rats. Bone 10, 447–452 (1989).

    Article  CAS  Google Scholar 

  21. Lindsay, R. et al. Randomized controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet 350, 550–555 (1997).

    Article  CAS  Google Scholar 

  22. Podbesek, R. et al. Effects of two treatment regimes with synthetic human parathyroid hormone fragment on bone formation and the tissue balance of trabecular bone in greyhounds. Endocrinology 112, 1000– 1016 (1983).

    Article  CAS  Google Scholar 

  23. Podbesek, R. et al. in Hormonal Control of Calcium Metabolism 118– 123 (ed., Potts, J.J.)(Exerpta Medica, Amsterdam, 1980).

    Google Scholar 

  24. Parsons, J.A., Meunier, P.J., Neer, R.M., Podbesek, R. & Reeve, J. in Osteoporosis (eds. DeLuca, H.F., Frost, H.M., Lee, J.S.S., Johnston Jr., C.C. & Parfitt, A.M.) 457–465 (University Park, Baltimore, 1981).

    Google Scholar 

  25. Segre, G.V. Principles of Bone Biology (eds. Bilezikian, J.P., Raicz, L.G. & Rodan, G.A.) 377–403 (Academic, San Diego, 1996).

    Google Scholar 

  26. Vortkamp, A., Pathi, S., Peretti, G.M., Caruso, E.M., Zaleske, D.J. & Tabin, C.J. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech. Dev. 7, 65–76 (1998).

    Article  Google Scholar 

  27. Dempster, D.W., Cosman, F., Parisien, M., Shen, V. & Lindsay, R. Anabolic actions of parathyroid hormone on bone. Endocr. Rev. 14, 690–709 (1993).

    CAS  PubMed  Google Scholar 

  28. Cosman, F. & Lindsay, R. Is parathyroid hormone a therapeutic option for osteoporosis? A review of the clinical evidence. Calcif. Tissue Int. 62, 475–480 (1998).

    Article  CAS  Google Scholar 

  29. Schipani, E., Kruse, K. & Juppner, H. A constituitively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268, 98–100 (1995).

    Article  CAS  Google Scholar 

  30. Lanske, B. et al. PTH/PTHrP receptor in early development and indian hedgehog-regulated bone growth. Science 273, 663– 666 (1996).

    Article  CAS  Google Scholar 

  31. Canalis, E., Centrella, M., Burch, W. & McCarthy, T.L. Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J. Clin. Invest. 83, 60–65 (1989).

    Article  CAS  Google Scholar 

  32. Jette AM. Harris BA. Cleary PD. Campion EW. (1987) Functional recovery after hip fracture. Arch. Phys. Med. Rehabil. 68, 735–740.

    CAS  PubMed  Google Scholar 

  33. Melton, L.J. 3rd. et al. Fractures attributable to osteoporosis: report from the National Osteoporosis Foundation. J. Bone Miner. Res. 12, 16–23 (1997).

    Article  Google Scholar 

  34. Ray, N.F., Chan, J.K., Thamer, M. & Melton, L.J. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J. Bone Miner. Res. 12, 24–35 (1997).

    Article  CAS  Google Scholar 

  35. Volpon, J.B. Nonunion using a canine model. Arch. Orthop. Trauma Surg. 113, 312–317 (1994).

    Article  CAS  Google Scholar 

  36. Iotsova, V. et al. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nature Med. 3, 1285–1289 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of M. Wagner (illustrations) and J. Baker, C. Debano, D. Kayner, K. Sweet, and R. Taylor (canine models and tissue preparation). J.B. thanks M. Young, Z. Shaked, D. Mooney, B. Abbott, and A. Baird for discussions. Thanks to P. Hoyle for advice and support. These studies were supported by a grant from NIH and by a Sponsored Research Agreement from Selective Genetics to the University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Bonadio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonadio, J., Smiley, E., Patil, P. et al. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 5, 753–759 (1999). https://doi.org/10.1038/10473

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing