Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A novel member of the F-box/WD40 gene family, encoding dactylin, is disrupted in the mouse dactylaplasia mutant

Abstract

Early outgrowth of the vertebrate embryonic limb requires signalling by the apical ectodermal ridge (AER) to the progress zone (PZ), which in response proliferates and lays down the pattern of the presumptive limb in a proximal to distal progression1. Signals from the PZ maintain the AER until the anlagen for the distal phalanges have been formed2. The semidominant mouse mutant dactylaplasia (Dac) disrupts the maintenance of the AER, leading to truncation of distal structures of the developing footplate, or autopod3,4,5. Adult Dac homozygotes thus lack hands and feet except for malformed single digits, whereas heterozygotes lack phalanges of the three middle digits. Dac resembles the human autosomal dominant split hand/foot malformation (SHFM) diseases. One of these, SHFM3, maps to chromosome 10q24 (Refs 6,7), which is syntenic to the Dac region on chromosome 19, and may disrupt the orthologue of Dac. We report here the positional cloning of Dac and show that it belongs to the F-box/WD40 gene family, which encodes adapters that target specific proteins for destruction by presenting them to the ubiquitination machinery8. In conjuction with recent biochemical studies9,10,11,12, this report demonstrates the importance of this gene family in vertebrate embryonic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Dac phenotype in the embryonic limb.
Figure 2: Genetic, physical and transcript map of the Dac region.
Figure 3: Characterization of the Dac mutations by blotting and sequencing.
Figure 4: Predicted sequence and function of dactylin.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Saunders, J.W. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108, 363–403 (1948).

    Article  PubMed  Google Scholar 

  2. Saunders, J.W. & Gasseling, M.T. Trans-filter propagation of apical ectoderm maintenance factor in the chick embryo wing bud. Dev. Biol. 7, 64–78 ( 1963).

    Article  Google Scholar 

  3. Chai, C.K. Dactylaplasia in mice. J. Hered. 72, 234–237 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Johnson, K.R., Lane, P.W., Ward-Bailey, P. & Davisson M.T. Mapping the mouse Dactylaplasia mutation, Dac, and a gene that controls its expression, mdac. Genomics 29, 457–464 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Crackower, M.A., Motoyama, J. & Tsui, L.C. Defect in the maintenance of the apical ectodermal ridge in the Dactylaplasia mouse. Dev. Biol. 201, 78–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Nunes, M.E. et al. A second autosomal split hand/split foot locus maps to chromosome 10q24-q25. Hum. Mol. Genet. 4, 2165– 2170 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. McKusick, V.A. Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders (Johns Hopkins University Press, Baltimore, 1998).

    Google Scholar 

  8. Patton, E.E., Willems, A.R. & Tyers, M. Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genet. 14, 236–43 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Latres, E., Chiaur, D.S. & Pagano, M. The human F box protein β-TrCP associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene 18, 849–854 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  10. Spencer, E., Jiang, J. & Chen, Z.J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13, 284–294 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Winston, J.T. et al. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590– 594 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Keller, S.A. et al. Kidney and retinal defects (Krd), a transgene-induced mutation with a deletion of mouse chromosome 19 that includes the Pax2 locus. Genomics 23, 309–320 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  14. Kazazian, H.H. Jr Mobile elements and disease. Curr. Opin. Genet. Dev. 8, 343–350 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  15. Ji, W., Zhang, X.Y., Warshamana, G.S., Qu, G.Z. & Ehrlich, M. Effect of internal direct and inverted Alu repeat sequences on PCR. PCR Methods Appl. 4, 109–116 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86 , 263–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Kominami, K., Ochotorena, I. & Toda, T. Two F-box/WD-repeat proteins Pop1 and Pop2 form hetero- and homo-complexes together with cullin-1 in the fission yeast SCF (Skp1-Cullin-1-F-box) ubiquitin ligase. Genes Cells 3, 721– 735 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Skowyra, D., Craig, K.L., Tyers, M., Elledge S.J. & Harper, J.W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Wolf, D.A., McKeon, F. & Jackson, P.K. F-box/WD repeat proteins Pop1p and Pop2p form heterooligomeric complexes to bind and direct the proteolytic destruction of Cdc18p. Curr. Biol. (in press).

  20. Yam, C.H., Ng, R.W., Siu, W.Y., Lau, A.W. & Poon, R.Y. Regulation of cyclin A-Cdk2 by SCF component Skp1 and F-box protein Skp2. Mol. Cell. Biol. 19, 635–645 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  22. Wall, M.A. et al. The structure of the G protein heterotrimer Gi α 1 β 1 γ 2. Cell 83, 1047– 1058 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Altabef, M., Clarke, J.D. & Tickle, C. Dorso-ventral ectodermal compartments and origin of apical ectodermal ridge in developing chick limb. Development 124, 4547–4556 (1997).

    CAS  PubMed  Google Scholar 

  24. Loomis, C.A., Kimmel, R.A., Tong, C.X., Michaud, J. & Joyner, A.L. Analysis of the genetic pathway leading to formation of ectopic apical ectodermal ridges in mouse Engrailed-1 mutant limbs. Development 125, 1137–1148 (1998).

    CAS  PubMed  Google Scholar 

  25. Michaud, J.L., Lapointe, F. & Le Douarin, N.M. The dorsoventral polarity of the presumptive limb is determined by signals produced by the somites and by the lateral somatopleure. Development 124, 1453– 1463 (1997).

    CAS  PubMed  Google Scholar 

  26. Dolle, P., Izpisua-Belmonte, J.C., Boncinelli, E. & Duboule, D. The Hox-4.8 gene is localized at the 5′ extremity of the Hox-4 complex and is expressed in the most posterior parts of the body during development. Mech. Dev. 36, 3–13 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Lyons, K.M., Pelton, R.W. & Hogan, B.L. Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development 109, 833– 844 (1990).

    CAS  PubMed  Google Scholar 

  28. Wilkinson, D.G. & Nieto, M.A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Sidow, A. et al. Serrate2 is disrupted in the mouse limb-development mutant syndactylism. Nature 389, 722– 725 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Dausman and R. Curry for help with mice; Z. Husain, K. Harris, K. Devon, K. Dewar, J. Rioux, T. Green, A. Kirby and C. Nusbaum for help with YACs, BACs and sequencing; K. Kusumi, M. Hosobuchi, J. Segre, B. Hamilton, D. Fambrough, A. Bortvin and members of the Jaenisch laboratory for discussions; and H. Sweet and P. Lane for expert assistance in initial characterization and linkage crosses of Dac1J and Dac2J mice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arend Sidow or Eric S. Lander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidow, A., Bulotsky, M., Kerrebrock, A. et al. A novel member of the F-box/WD40 gene family, encoding dactylin, is disrupted in the mouse dactylaplasia mutant. Nat Genet 23, 104–107 (1999). https://doi.org/10.1038/12709

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing