Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28

Abstract

The T-cell-specific cell-surface receptors CD28 and CTLA-4 are important regulators of the immune system. CD28 potently enhances those T-cell functions that are essential for an effective antigen-specific immune response1,2,3,4,5, and the homologous CTLA-4 counterbalances the CD28-mediated signals and thus prevents an otherwise fatal overstimulation of the lymphoid system6,7,8,9. Here we report the identification of a third member of this family of molecules, inducible co-stimulator (ICOS), which is a homodimeric protein of relative molecular mass 55,000–60,000 (Mr 55K–60K). Matching CD28 in potency, ICOS enhances all basic T-cell responses to a foreign antigen, namely proliferation, secretion of lymphokines, upregulation of molecules that mediate cell–cell interaction, and effective help for antibody secretion by B cells. Unlike the constitutively expressed CD28, ICOS has to be de novo induced on the T-cell surface, does not upregulate the production of interleukin-2, but superinduces the synthesis of interleukin-10, a B-cell-differentiation factor. In vivo, ICOS is highly expressed on tonsillar T cells, which are closely associated with B cells in the apical light zone of germinal centres, the site of terminal B-cell maturation. Our results indicate that ICOS is another major regulator of the adaptive immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification, purification and cloning of ICOS.
Figure 2: Co-stimulatory functions of ICOS.
Figure 3: Expression of ICOS on tonsillar T cells.

Similar content being viewed by others

References

  1. Hara, T., Fu, S. M. & Hansen, J. A. Human T cell activation. II. A new activation pathway used by a major T cell population via a disulfide-bonded dimer of a 44 kilodalton polypeptide (9.3 antigen). J. Exp. Med. 161, 1513–1524 (1985).

    Article  CAS  Google Scholar 

  2. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Lucas, P. J., Negishi, I., Nakayama, K., Fields, L. E. & Loh, D. Y. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J. Immunol. 154, 5757–5768 (1995).

    CAS  PubMed  Google Scholar 

  4. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  Google Scholar 

  5. Chambers, C. A. & Allison, J. P. Co-stimulation in T cell responses. Curr. Opin. Immunol. 9, 396–404 (1997).

    Article  CAS  Google Scholar 

  6. Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  CAS  Google Scholar 

  7. Tivol, E. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  Google Scholar 

  8. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Thompson, C. B. & Allison, J. P. The emerging role of CTLA-4 as an immune attenuator. Immunity 7, 445–450 (1997).

    Article  CAS  Google Scholar 

  10. Brunet, J. F. et al. Anew member of the immunoglobulin superfamily — CTLA-4. Nature 328, 267–270 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Peach, R. J. et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J. Exp. Med. 180, 2049–2058 (1994).

    Article  CAS  Google Scholar 

  12. Truneh, A. et al. Differential recognition by CD28 of its cognate counter receptors CD80 (B7.1) and B70 (B7.2): analysis by site directed mutagenesis. Mol. Immunol. 33, 321–334 (1996).

    Article  CAS  Google Scholar 

  13. Nunes, J. et al. CD28 mAbs with distinct binding properties differ in their ability to induce T cell activation: analysis of early and late activation events. Int. Immunol. 5, 311–315 (1993).

    Article  CAS  Google Scholar 

  14. Thompson, C. B. et al. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc. Natl Acad. Sci. USA 86, 1333–1337 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Kroczek, R. A. et al. Defective expression of CD40 ligand on T cells causes “X-linked immunodeficiency with hyper-IgM (HIGM1)”. Immunol. Rev. 138, 39–59 (1994).

    Article  CAS  Google Scholar 

  16. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  17. Tsiagbe, V. K., Inghirami, G. & Thorbecke, G. J. The physiology of germinal centers. Crit. Rev. Immunol. 16, 381–421 (1996).

    CAS  PubMed  Google Scholar 

  18. Krummel, M. F. & Allison, J. P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533–2540 (1996).

    Article  CAS  Google Scholar 

  19. Walunas, T. L., Bakker, C. Y. & Bluestone, J. A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183, 2541–2550 (1996).

    Article  CAS  Google Scholar 

  20. Nakanishi, K. et al. Both interleukin 2 and a second T cell-derived factor in EL-4 supernatant have activity as differentiation factors in IgM synthesis. J. Exp. Med. 160, 1605–1621 (1984).

    Article  CAS  Google Scholar 

  21. Jung, L. K., Hara, T. & Fu, S. M. Detection and functional studies of p60-65 (Tac antigen) on activated human B cells. J. Exp. Med. 160, 1597–1602 (1984).

    Article  CAS  Google Scholar 

  22. Rousset, F. et al. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc. Natl Acad. Sci. USA 89, 1890–1893 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Kindler, V. & Zubler, R. H. Memory, but not naive, peripheral blood B lymphocytes differentiate into Ig-secreting cells after CD40 ligation and costimulation with IL-4 and the differentiation factors IL-2, IL-10, and IL-3. J. Immunol. 159, 2085–2090 (1997).

    CAS  PubMed  Google Scholar 

  24. Choe, J. & Choi, Y. S. IL-10 interrupts memory B cell expansion in the germinal center by inducing differentiation into plasma cells. Eur. J. Immunol. 28, 508–515 (1998).

    Article  CAS  Google Scholar 

  25. Schneider, C., Newman, R. A., Sutherland, D. R., Asser, U. & Greaves, M. F. Aone-step purification of membrane proteins using a high efficiency immunomatrix. J. Biol. Chem. 257, 10766–10769 (1982).

    CAS  PubMed  Google Scholar 

  26. Rosenfeld, J., Capdevielle, J., Guillemot, J. C. & Ferrara, P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal. Biochem. 203, 173–179 (1992).

    Article  CAS  Google Scholar 

  27. Jacobs, K. A. et al. The thermal stability of oligonucleotide duplexes is sequence independent in tetraalkylammonium salt solutions: application to identifying recombinant DNA clones. Nucleic Acids Res. 16, 4637–4650 (1988).

    Article  CAS  Google Scholar 

  28. Aruffo, A. & Seed, B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc. Natl Acad. Sci. USA 84, 8573–8577 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Williams, A. F. & Barclay, A. N. The immunoglobulin superfamily — domains for cell surface recognition. Annu. Rev. Immunol. 6, 381–405 (1988).

    Article  CAS  Google Scholar 

  30. Cordell, J. L. et al. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J. Histochem. Cytochem. 32, 219–229 (1984).

    Article  CAS  Google Scholar 

  31. Prediction of transmembrane helices in proteins [online] (cited 01 Dec. 98)〈www.cbs.dtu.dk/services/TMHMM-1.0/〉 ((1998)).

Download references

Acknowledgements

We thank J. Ledbetter for the gift of monoclonal antibody 9.3; J. Slupsky for critical reading of the manuscript; and K. Ranke for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Kroczek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutloff, A., Dittrich, A., Beier, K. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999). https://doi.org/10.1038/16717

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16717

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing