Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heterogeneous sensitivity of cultured dorsal root ganglion neurones to opioid peptides selective for µ - and δ -opiate receptors

Abstract

Opiate-mediated analgesia at the spinal level is thought to involve opiates binding to opiate receptors on primary afferent terminals1–3 resulting in a selective depression of neurotransmitter release4–9. Multiple opiate receptor types have been distinguished11–22 and µ - and δ -opiate receptors, originally described by Kosterlitz et al.17,18,22, have been demonstrated on primary afferent terminals1 but the correspondence of these opiate receptors to opiate-mediated depression of transmitter release is unclear. However, opiates binding to receptors present on individual somata of the dorsal root ganglion (DRG) neurones in dissociated cell culture have been reported to reduce the duration and amplitude of calcium-dependent action potentials8,10. Therefore these opiate receptors might have a function similar to those on primary afferent terminals where a decrease in calcium entry would be correlated with a decrease in transmitter release23,24. We have now studied the response of DRG neurones to opiate agonists with different affinity for μ- or δ-receptors and our results suggest that both receptor types can mediate decrease in somatic calcium-dependent action potentials but that there is a variable proportion of µ- and δ-receptors on DRG neurones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fields, H. L., Emson, P. C., Leigh, B. K., Gilbert, R. F. T. & Iversen, L. L. Nature 284, 351–353 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Gamse, R., Holzer, P. & Lembeck, F. Naunyn-Schmiedeberg's Archs Pharmak. 308, 281–285 (1979).

    Article  CAS  Google Scholar 

  3. Lamotte, C., Pert, C. B. & Snyder, S. H. Brain Res. 112, 407–412 (1976).

    Article  CAS  Google Scholar 

  4. Calvillo, O., Henry, J. L. & Neuman, R. S. Can. J. Physiol. Pharmac. 52, 1207–1211 (1974).

    Article  CAS  Google Scholar 

  5. Duggan, A. W., Hall, J. G. & Headley, P. M. Nature 264, 456–458 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Duggan, A. W., Hall, J. G. & Headley, P. M. Br. J. Pharmac. 61, 65–76 (1977).

    Article  CAS  Google Scholar 

  7. Macdonald, R. L. & Nelson, P. G. Science 199, 1449–1451 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Mudge, A. W., Leeman, S. E. & Fischbach, G. D. Proc. natn. Acad. Sci. U.S.A. 76, 526–530 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Sastry, B. R. Neuropharmacology 18, 367–375 (1979).

    Article  CAS  Google Scholar 

  10. Werz, M. A. & Macdonald, R. L. Brain Res. 239, 315–321 (1982).

    Article  CAS  Google Scholar 

  11. Chang, K.-J., Killian, A., Hazum, E., Cuatrecasas, P. & Chang, J.-K. Science 212, 75–77 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Chang, K.-J. & Cuatracasas, P. J. biol. Chem. 254, 2610–2618 (1979).

    CAS  Google Scholar 

  13. Chang, K.-J., Cooper, B. R., Hazum, E. & Cuatrecasas, P. Molec. Pharmac. 16, 91–104 (1979).

    CAS  Google Scholar 

  14. Chavkin, C. & Goldstein, A. Nature 291, 591–593 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Egan, T. M. & North, R. A. Science 214, 923–924 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Goodman, R. R., Snyder, S. H., Kuhar, M. J. & Young, W. S. III Proc. natn. Acad. Sci. U.S.A. 77, 6239–6243 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Kosterlitz, H. W., Lord, J. A. H., Paterson, S. J. & Waterfield, A. A. Br. J. Pharmac. 68, 333–342 (1980).

    Article  CAS  Google Scholar 

  18. Lord, J. A. H., Waterfield, A. A., Hughes, J. & Kosterlitz, H. W. Nature 267, 495–499 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Martin, W. R. Pharmac. Rev. 19, 463–521 (1967).

    CAS  Google Scholar 

  20. Robson, L. E. & Kosterlitz, H. W. Proc. R. Soc. B205, 425–432 (1979).

    ADS  CAS  Google Scholar 

  21. Schulz, R., Wüster, M., Krenss, H., Herz, A. Molec. Pharmac. 18, 395–401 (1980).

    CAS  Google Scholar 

  22. Waterfield, A., Smokcum, R. W. J., Hughes, J., Kosterlitz, H. W. & Henderson, G. Eur. J. Pharmac. 43, 107–116 (1977).

    Article  CAS  Google Scholar 

  23. Llinas, R., Steinberg, I. Z. & Walton, K. Proc. natn. Acad. Sci. U.S.A. 73, 2918–2922 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Llinas, R., Steinberg, I. Z. & Walton, K. Biophys. J. 33, 323–352 (1981).

    Article  CAS  Google Scholar 

  25. Dichter, M. A. & Fischbach, G. D. J. Physiol., Lond. 267, 281–298 (1977).

    Article  CAS  Google Scholar 

  26. Heyer, E. J. & Macdonald, R. L. J. Neurophysiol. 47, 641–655 (1982).

    Article  CAS  Google Scholar 

  27. Ransom, B. R. & Holz, R. W. Brain Res. 136, 445–453 (1977).

    Article  CAS  Google Scholar 

  28. Ransom, B. R., Neale, E., Henkart, M., Bullock, P. N. & Nelson, P. G. J. Neurophysiol. 40, 1132–1150 (1977).

    Article  CAS  Google Scholar 

  29. Zhang, A.-Z., Chang, J.-K. & Pasternak, G. W. Life Sci. 28, 2829–2836 (1981).

    Article  CAS  Google Scholar 

  30. Yoshida, S. & Matsuda, Y. J. Neurophysiol. 42, 1134–1145 (1979).

    Article  CAS  Google Scholar 

  31. Armstrong, C. M. & Binstock, L. J. gen. Physiol. 48, 859–872 (1965).

    Article  CAS  Google Scholar 

  32. Werz, M. A. & Macdonald, R. L. Neurosci. Abstr. 6, 416 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werz, M., Macdonald, R. Heterogeneous sensitivity of cultured dorsal root ganglion neurones to opioid peptides selective for µ - and δ -opiate receptors. Nature 299, 730–732 (1982). https://doi.org/10.1038/299730a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299730a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing