Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of N-ras gene in bone marrow cells from a patient with acute myeloblastic leukaemia

Abstract

Human tumour cell lines of various histological origin contain genes that can transform NIH 3T3 cells in culture1,2. Most frequently the gene is an activated K-ras gene, more rarely an activated H-ras gene, and sometimes the recently discovered N-ras3–11. Other transforming genes, distinct from ras, have been found in B- and T-cell leukaemias9,12. Since most of the transforming genes have been identified in cell lines, it is still unclear at what stage the genes become activated. We have therefore initiated a study to determine if the presence of a transforming gene correlates with the clinical course of a malignant disease. Here we demonstrate the presence of a transforming N-ras gene in bone marrow cells from a patient with acute myeloblastic leukaemia at the outbreak of the acute disease phase. Fibroblast DNA from the same patient was not transforming. In contrast to HL-60 cells13,14, no alteration of the myc gene was detected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weinberg, R. A. Adv. Cancer Res. 36, 149–163 (1982).

    Article  CAS  Google Scholar 

  2. Cooper, G. M. Science 218, 801–806 (1982).

    Article  ADS  Google Scholar 

  3. Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Nature 297, 474–478 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Santos, E., Tronick, S. R., Aaronson, S. A., Pulciani, S. & Barbacid, M. Nature 298, 343–347 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Der, C. J., Krontiris, T. G. & Cooper, G. M. Proc. natn. Acad. Sci. U.S.A. 79, 3637–3640 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Pulciani, S. et al. Nature 300, 539–541 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Shimizu et al. Proc. natn. Acad. Sci. U.S.A. 80, 2112–2116 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Hall, A., Marshall, C. G., Spurr, N. K. & Weiss, R. A. Nature 303, 396–400 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Lane, M.-A., Sainten, A. & Cooper, G. M. Cell 28, 873–880 (1982).

    Article  CAS  Google Scholar 

  10. McCoy, M. S. et al. Nature 302, 79–81 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Murray, M. J. et al. Cell 33, 749–757 (1983).

    Article  CAS  Google Scholar 

  12. Goubin, G. et al. Nature 302, 114–119 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Collins, S. & Groudine, M. Nature 298, 679–681 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Dalla Favera, R., Wong-Staal, F. & Gallo, R. C. Nature 299, 61–63 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Bennett, J. M. et al. Br. J. Haemat. 33, 451–458 (1976).

    Article  CAS  Google Scholar 

  16. Rubin, C. M., Houck, C. M., Deininger, P. L., Friedmann, T. & Schmid, C. W. Nature 284, 372–374 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Marshall, C. J., Hall, A. & Weiss, R. A. Nature 299, 171–173 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Wigler, M. Proc. natn. Acad. Sci. U.S.A. 76, 1373–1376 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Taub, R. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7837–7841 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Dalla Favera, R. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7824–7827 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Crews, S. et al. Science 218, 1319–1321 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Sheng-Ong, G. L. C., Keath, E. J., Piccoli, S. P. & Cole, M. D. Cell 31, 443–452 (1982).

    Article  Google Scholar 

  23. Tabin, C. J. et al. Nature 300, 143–149 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Reddy, E. P., Reynold, R. K., Santos, E. & Barbacid, M. Nature 300, 149–152 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Taparowski, E. et al. Nature 300, 762–765 (1982).

    Article  ADS  Google Scholar 

  26. Yuasa, Y. et al. Nature 303, 775–779 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambke, C., Signer, E. & Moroni, C. Activation of N-ras gene in bone marrow cells from a patient with acute myeloblastic leukaemia. Nature 307, 476–478 (1984). https://doi.org/10.1038/307476a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307476a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing