Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of human vascular endothelial stress fibres by fluid shear stress

Abstract

Endothelial cells of the arterial vascular system and the heart contain straight actin filament bundles, of which there are few, if any, in the venous endothelium1–4. Since stress fibre-containing endothelial cells within the vascular system tend to be located at sites exposed to particularly high shear stress of blood flow, we have investigated, in an experimental rheological system (Fig. 1), the response of the endothelial actin filament skeleton to controlled levels of fluid shear stress. Here we report that endothelial stress fibres can be induced by a 3-h exposure of confluent monolayer cultures of human vascular endothelium to a fluid shear stress of 2 dynes cm−2, approximately the stress occurring in human arteries in vivo. Fourfold lower levels of shear stress that normally occur only in veins, had no significant effect on the endothelial actin filament system. The formation of endothelial stress fibres in response to critical levels of fluid shear stress is probably a functionally important mechanism that protects the endothelium from hydrodynamic injury and detachment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Drenckhahn, D. Prog. appl. Microcirculation 1, 53–70 (1983).

    Article  Google Scholar 

  2. Drenckhahn, D., Gröschel-Stewart, U., Kendrick-Jones, J. & Scholey, J. Eur. J. Cell Biol. 30, 100–111 (1983).

    CAS  PubMed  Google Scholar 

  3. Gabbiani, G., Gabbiani, F., Lombardi, D. & Schwartz, S. M. Proc. natn. Acad. Sci. U.S.A. 80, 2361–2364 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Wong, A. J., Pollard, T. D. & Herman, I. Science 219, 867–869 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Jaffé, E. A., Nachman, R. L., Becker, D. G. & Minick, C. R. J. clin. Invest. 52, 2745–2756 (1973).

    Article  Google Scholar 

  6. Gospodarowicz, D., Vlodavsky, J. & Savion, N. J. supramolec. Struct. 13, 339–372 (1980).

    Article  CAS  Google Scholar 

  7. Faulstich, H., Trischmann, H. & Mayer, D. Expl Cell Res. 144, 73–82 (1983).

    Article  CAS  Google Scholar 

  8. Drenckhahn, D. & Mannherz, H. Eur. J. Cell Biol. 30, 167–176 (1983).

    CAS  PubMed  Google Scholar 

  9. Kalnins, V. I. & Subrahmanyan, L. Eur. J. Cell Biol. 24, 36–44 (1981).

    CAS  PubMed  Google Scholar 

  10. Goldman, R. D., Milsted, A., Schloss, J. A., Starger, J. & Yerna, M. J. A. Rev. Physiol. 41, 703–722 (1979).

    Article  CAS  Google Scholar 

  11. Gröschel-Stewart, U. & Drenckhahn, D. Collagen Rel. Res. 2, 381–463 (1982).

    Article  Google Scholar 

  12. Dewey, C. F., Bussolari, S. R., Gimbrone, M. A. & Davies, P. F. J. biomech. Eng. 103, 177–185 (1981).

    Article  Google Scholar 

  13. Isenberg, G., Rathke, P. C., Hülsmann, N., Franke, W. W. & Wohlfarth-Bottermann, K. E. Cell Tissue Res. 166, 427–428 (1976).

    Article  CAS  Google Scholar 

  14. Kreis, T. E. & Birchmeyer, W. Cell 22, 555–561 (1980).

    Article  CAS  Google Scholar 

  15. Ross, R. & Glomset, J. A. New Engl. J. Med. 295, 369–377, 420–425 (1976).

    Article  CAS  Google Scholar 

  16. Hammersen, F. Adv. Microcirculation 9, 95–134 (1980).

    Google Scholar 

  17. Langille, B. L. & Adamson, S. L. Circulation Res. 48, 481–488 (1981).

    Article  CAS  Google Scholar 

  18. Buckley, I. K. & Porter, K. Protoplasma 64, 350–380 (1967).

    Article  Google Scholar 

  19. White, G. E., Fujiwara, K., Shefton, E., Dewey, C. F. & Gimbrone, M. A. Fedn Proc. 41, 321 (Abstr.) (1982).

    Google Scholar 

  20. Schmidt-Schönbein, H., Gosen, J. V., Heinrich, L., Klose, H. J. & Vogeler, E. Microvasc. Res. 6, 366–376 (1973).

    Article  Google Scholar 

  21. Kiesewetter, H. et al. Biomed. Techn 27, 209–213 (1982).

    Article  CAS  Google Scholar 

  22. Maciag, T., Cerundolo, J., Ilfley, S., Kelley, P. R. & Forand, R. Proc. natn. Acad. Sci. U.S.A. 76, 5674–5678 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, RP., Gräfe, M., Schnittler, H. et al. Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307, 648–649 (1984). https://doi.org/10.1038/307648a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307648a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing