Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-dependent calcium and potassium channels in retinal glial cells

Abstract

Glial cells, which outnumber neurones in the central nervous system, have traditionally been considered to be electrically inexcitable and to play only a passive role in the electrical activity of the brain1. Recent reports have demonstrated, however, that certain glial cells, when maintained in primary culture, possess voltage-dependent ion channels2–4. It remains to be demonstrated whether these channels are also present in glial cells in vivo. I show here that Müller cells, the principal glial cells of the vertebrate retina, can generate ‘Ca2+spikes’ in freshly excised slices of retinal tissue. In addition, voltage-clamp studies of enzymatically dissociated Müller cells demonstrate the presence of four types of voltage-dependent ion channels: a Ca2+ channel, a Ca2+-activated K+ channel, a fast-inactivating (type A) K+ channel and an inward-rectifying K+ channel. Currents generated by these voltage-dependent channels may enhance the ability of Müller cells to regulate extracellular K+ levels in the retina and may be involved in the generation of the electroretinogram.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kuffler, S. W. Proc. R. Soc. B168, 1–21 (1967).

    ADS  CAS  Google Scholar 

  2. Chiu, S. Y., Schrager, P. & Ritchie, J. M. Nature 311, 156–157 (1984).

    Article  ADS  CAS  Google Scholar 

  3. MacVicar, B. A. Science 226, 1345–1347 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Bevan, S. & Raff, M. Nature 315, 229–232 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Newman, E. A. Nature 309, 155–157 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Newman, E. A. J. Neurosci. 5, 2225–2239 (1985).

    Article  CAS  Google Scholar 

  7. Conner, J. D., Detwiler, P. B. & Sarthy, P. V. J. Physiol., Lond. 362, 79–92 (1985).

    Article  CAS  Google Scholar 

  8. Fleckenstein, A. A. Rev. Pharmac. Tox. 17, 149–166 (1977).

    Article  CAS  Google Scholar 

  9. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Plügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  10. Byerly, L., Chase, P. B. & Stimers, J. R. J. gen. Physiol. 85, 491–518 (1985).

    Article  CAS  Google Scholar 

  11. Hagiwara, S. & Ohmori, H. J. Physiol., Lond. 331, 231–252 (1982).

    Article  CAS  Google Scholar 

  12. Meech, R. W. A. Rev. Biophys. Bioengng 7, 1–18 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Connor, J. A. & Stevens, C. F. J. Physiol., Lond. 213, 21–30 (1971).

    Article  CAS  Google Scholar 

  14. Thompson, S. H. J. Physiol., Lond. 265, 465–488 (1971).

    Article  Google Scholar 

  15. Hagiwara, S., Miyazaki, S. & Rosenthal, N. P. J. gen. Physiol. 67, 621–638 (1976).

    Article  CAS  Google Scholar 

  16. Quandt, F. N. & MacVicar, B. A. Soc. Neurosci. Abstr. 10, 939 (1984).

    Google Scholar 

  17. Bevan, S., Chiu, S. Y., Gray, P. T. A. & Ritchie, J. M. J. Physiol., Lond. 361, 18P (1985).

    Google Scholar 

  18. Newman, E. A., Frambach, D. A. & Odette, L. L. Science 225, 1174–1175 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Kline, R. P., Ripps, H. & Dowling, J. E. Proc. natn. Acad. Sci. U.S.A. 75, 5727–5731 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Mori, S., Miller, W. H. & Tomita, T. Proc. natn. Acad. Sci. U.S.A. 73, 1351–1354 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, E. Voltage-dependent calcium and potassium channels in retinal glial cells. Nature 317, 809–811 (1985). https://doi.org/10.1038/317809a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317809a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing