Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Human β-tryptase is a ring-like tetramer with active sites facing a central pore

Abstract

Human tryptase, a mast-cell-specific serine proteinase that may be involved in causing asthma and other allergic and inflammatory disorders1,2,3, is unique in two respects: it is enzymatically active only as a heparin-stabilized tetramer, and it is resistant to all known endogenous proteinase inhibitors. The 3-Å crystal structure of human β-tryptase in a complex with 4-amidinophenyl pyruvic acid shows four quasi-equivalent monomers arranged in a square flat ring of pseudo 222 symmetry. Each monomer contacts its neighbours at two different interfaces through six loop segments. These loops are located around the active site of β-tryptase and differ considerably in length and conformation from loops of other trypsin-like proteinases. The four active centres of the tetramer are directed towards an oval central pore, restricting access for macromolecular substrates and enzyme inhibitors. Heparin chains might stabilize the complex by binding to an elongated patch of positively charged residues spanning two adjacent monomers. The nature of this unique tetrameric architecture explains many of tryptase's biochemical properties and provides a basis for the rational design of monofunctional and bifunctional tryptase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solid-surface representation of the tryptase tetramer.
Figure 2: Ribbon representation of one tryptase monomer in the standard orientation.
Figure 3: Structure-based amino-acid-sequence alignment.
Figure 4: Ribbon representation of the intermonomer contacts.
Figure 5: Section of the final 3.
Figure 6: Ribbon diagram of the tryptase-tetramer–LDTI complex.

Similar content being viewed by others

References

  1. Caughey, G. H. Mast Cell Proteases in Immunology and Biology (Marcel Dekker, New York, 1995).

    Google Scholar 

  2. Caughey, G. H. Of mites and men: trypsin-like proteases in the lungs. Am. J. Respir. Cell Mol. Biol. 16, 621–628 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Seife, C. Blunting nature's swiss army knife. Science 277, 1602–1603 (1997).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  4. Schwartz, L. B.et al. The alpha form of human tryptase is the predominant type present in blood at baseline in normal subjects and is elevated in those with systemic mastocytosis. J. Clin. Invest. 96, 2702–2710 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sakai, K., Ren, S. & Schwartz, L. B. Anovel heparin-dependent processing pathway for human tryptase. Autocatalysis followed by activation with dipeptidyl peptidase I. J. Clin. Invest. 97, 988–995 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwartz, L. B. Tryptase: a mast cell serine protease. Methods Enzymol. 244, 88–100 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Alter, S. C., Metcalfe, D. D., Bradford, T. R. & Schwartz, L. B. Regulation of human mast cell tryptase. Effects of enzyme concentration, ionic strength and the structure and negative charge density of polysaccharides. Biochem. J. 248, 821–827 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schechter, N. M., Eng, G. Y. & McCaslin, D. R. Human skin tryptase: kinetic characterization of its spontaneous inactivation. Biochemistry 32, 2617–2625 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Addington, A. K. & Johnson, D. A. Inactivation of human lung tryptase: evidence for a re-activatable tetrameric intermediate and active monomers. Biochemistry 35, 13511–13518 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Sommerhoff, C. P.et al. AKazal-type inhibitor of human mast cell tryptase: isolation from the medical leech Hirudo medicinalis, characterization, and sequence analysis. Biol. Chem. Hoppe-Seyler 375, 685–694 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Stubbs, M. T.et al. The three dimensional structure of recombinant leech-derived tryptase inhibitor in complex with trypsin: implications for the structure of human mast cell tryptase and its inhibition. J. Biol. Chem. 272, 19931–19937 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Kam, C. M.et al. Mammalian tissue trypsin-like enzymes: substrate specificity and inhibitory potency of substituted isocoumarin mechanism-based inhibitors, benzamidine derivatives, and arginine fluoroalkyl ketone transition-state inhibitors. Arch. Biochem. Biophys. 316, 808–814 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Clark, J. M., Moore, W. R. & Tanaka, R. D. Tryptase inhibitors: a new class of antiinflammatory drugs. Drugs Future 21, 811–816 (1996).

    Article  CAS  Google Scholar 

  14. Johnson, D. A. & Barton, G. J. Mast cell tryptases: examination of unusual characteristics by multiple sequence alignment and molecular modeling. Protein Sci. 1, 370–377 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsumoto, R., Sali, A., Ghildyal, N., Karplus, M. & Stevens, R. L. Packaging of proteases and proteoglycans in the granules of mast cells and other hematopoietic cells. A cluster of histidines on mouse mast cell protease 7 regulates its binding to heparin serglycin proteoglycans. J. Biol. Chem. 270, 19524–19531 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Fujinaga, M., Chernaia, M. M., Halenbeck, R., Koths, K. & James, M. N. The crystal structure of PR3, a neutrophil serine proteinase antigen of Wegener's granulomatosis antibodies. J. Mol. Biol. 261, 267–278 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Bode, W. & Schwager, P. The refined crystal structure of bovine beta-trypsin at 1.8 Å resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J. Mol. Biol. 98, 693–717 (1975).

    Article  CAS  PubMed  Google Scholar 

  18. Walter, J. & Bode, W. The X-ray crystal structure analysis of the refined complex formed by bovine trypsin and p-amidinophenylpyruvate at 1.4 Å resolution. Hoppe-Seyler's Z. Physiol. Chem. 364, 949–959 (1983).

    Article  CAS  Google Scholar 

  19. Stürzebecher, J., Prasa, D. & Sommerhoff, C. P. Inhibition of human mast cell tryptase by benzamidine derivatives. Biol. Chem. Hoppe-Seyler 373, 1025–1030 (1992).

    Article  PubMed  Google Scholar 

  20. Caughey, G. H., Raymond, W. W., Bacci, E., Lombardy, R. J. & Tidwell, R. R. Bis(5-amidino-2-benzimidazolyl)methane and related amidines are potent, reversible inhibitors of mast cell tryptases. J. Pharmacol. Exp. Ther. 264, 676–682 (1993).

    CAS  PubMed  Google Scholar 

  21. Fiorucci, L., Erba, F., Bolognesi, M., Coletta, M. & Ascoli, F. pH dependence of bovine mast cell tryptase catalytic activity and of its inhibition by 4′, 6-diamidino-2-phenylindole. FEBS Lett. 408, 85–88 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Bode, W. & Huber, R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur. J. Biochem. 204, 433–451 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Otwinowski, Z. & Minor, W. DENZO: a Film Processing for Macromolecular Crystallography (Yale Univ., 1993).

    Google Scholar 

  24. Navaza, J. An automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  25. Roussel, A. & Cambilleau, C. TurboFRODO in Sillicon Graphics Geometry (Sillicon Graphics, Mountain View, California, 1989).

    Google Scholar 

  26. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  27. Brünger, G. J. XPLOR (version 3.1). A System for X-ray Crystallography and NMR (Yale Univ. Press, 1993).

    Google Scholar 

  28. Nicholls, A., Bharadwaj, R. & Honig, B. GRASP — graphical representation and analysis of surface properties. Biophys. J. 64, A166 (1993).

    Google Scholar 

  29. Barton, G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Evans, S. V. SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134–138 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Grosse for help in protein crystallization, R. Mentele for amino-acid-sequence analysis, and M. T. Stubbs for reading the paper. This work was supported by scholarships from Programa Praxis XXI of the Fundação para a Ciência e a Tecnologia and the Programa Gulbenkian de Doutoramento em Biologia e Medicina, Portugal, and by Biotech programs of the European Union, the Sonderforschungsbereich 469 of the University of Munich, the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Bode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, P., Bergner, A., Macedo-Ribeiro, S. et al. Human β-tryptase is a ring-like tetramer with active sites facing a central pore. Nature 392, 306–311 (1998). https://doi.org/10.1038/32703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32703

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing