Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells

Abstract

ACTIVATION of NMDA (N-methyl-D-aspartate) receptors by neurotransmitter glutamate stimulates phospholipase A2 to release arachidonic acid1,2. This second messenger facilitates long-term potentiation of glutamatergic synapses in the hippocampus3, possibly by blocking glutamate uptake4,5. We have studied the effect of arachidonic acid on glutamate uptake into glial cells using the whole-cell patch-clamp technique to monitor the uptake electrically6,7. Micromolar levels of arachidonic acid inhibit glutamate uptake, mainly by reducing the maximum uptake rate with only small effects on the affinity for external glutamate and sodium. On removal of arachidonic acid a rapid (5 minutes) phase of partial recovery is followed by a maintained suppression of uptake lasting at least 20 minutes. Surprisingly, the action of arachidonic acid is unaffected by cyclo-oxygenase or lipoxygenase inhibitors suggesting that it inhibits uptake directly, possibly by increasing membrane fluidity. As blockade of phospholipase A2 prevents the induction of long-term potentiation (LTP) 8, inhibition of glutamate uptake by arachidonic acid may contribute to the increase of synaptic gain that occurs in LTP. During anoxia, release of arachidonic acid9 could severely compromise glutamate uptake and thus contribute to neuronal death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dumuis, A., Sebben, M., Haynes, L., Pin, J.-P. & Bockaert J. Nature 336, 68–70 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Lazarewicz, J. W., Wroblewski, J. T., Palmer, M. E. & Costa, E. Neuropharmacology 27, 765–769 (1988).

    Article  CAS  Google Scholar 

  3. Williams, J. H., Errington, M. L., Lynch, M. A. & Bliss, T. V. P. Nature 341, 739–742 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Chan, P. H., Kerlan, R. & Fishman, R. A. J. Neurochem. 40, 309–316 (1983).

    Article  CAS  Google Scholar 

  5. Yu, A. C. H., Chan, P. H. & Fishman, R. A. J. Neurochem. 47, 1181–1189 (1986).

    Article  CAS  Google Scholar 

  6. Brew, H. & Attwell, D. Nature 327, 707–709 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Barbour, B., Brew, H. & Attwell, D. Nature 335, 433–435 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Linden, D. J., Sheu, F.-S., Murakami, K. & Routtenberg, A. J. Neurosci. 7, 3783–3792 (1987).

    Article  CAS  Google Scholar 

  9. Rehncrona, S., Westerberg, E., Akesson, B. & Siesjö, B. K. J. Neurochem. 38, 84–93 (1982).

    Article  CAS  Google Scholar 

  10. Attwell, D. & Sarantis, M. J. Physiol. 415, 40P (1989).

    Google Scholar 

  11. Cull-Candy, S. G., Howe, J. R. & Ogden, D. C. J. Physiol. 400, 189–222 (1988).

    Article  CAS  Google Scholar 

  12. Piomelli, D. et al. Nature 328, 38–43 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Sekiguchi, K., Tsukuda, M., Ase, K., Kikkawa, U. & Nishizuka, Y. J. Biochem. (Tokyo) 103, 759–765 (1988).

    Article  CAS  Google Scholar 

  14. Swann, A. C. Arch. Biochem. Biophys. 233, 354–361 (1984).

    Article  CAS  Google Scholar 

  15. Le Grimellec, C., Friedlander, G. & Giocondi, M.-C. News physiol. Sci. 3, 227–229 (1988).

    CAS  Google Scholar 

  16. Rothman, S. M. & Olney, J. W. Trends Neurosci. 10, 299–302 (1987).

    Article  CAS  Google Scholar 

  17. Lynch, M. A., Errington, M. L. & Bliss, T. V. P. Neuroscience 30, 693–701 (1989).

    Article  CAS  Google Scholar 

  18. Shiells, R. A., Falk, G. & Naghshineh, S. Proc. Roy. Soc. Lond. B. 227, 121–135 (1986).

    ADS  CAS  Google Scholar 

  19. Lynch, M. A., Errington, M. L. & Bliss, T. V. P. Neurosci. Lett 62, 123–129 (1985).

    Article  CAS  Google Scholar 

  20. Dolphin, A. C., Errington, M. L. & Bliss, T. V. P. Nature 297, 496–498 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Wong, P. Y. D., Bedwani, J. R. & Cuthbert, A. W. Nature, New. Biol. 238, 27–31 (1972).

    Article  CAS  Google Scholar 

  22. Bass, D. A., Flaherty, J. T., Szejda, P., DeChatelet, L. R. & McCall, C. E. Proc. natn. Acad Sci., U.S.A. 77, 5125–5129 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Ford-Hutchinson, A. W., Bray, M. A. & Smith, M. J. H. J. Pharm. Pharmacol. 31, 868–869 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbour, B., Szatkowski, M., Ingledew, N. et al. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342, 918–920 (1989). https://doi.org/10.1038/342918a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342918a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing