Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake

Abstract

GLUTAMATE uptake into nerve and glial cells usually functions to keep the extracellular glutamate concentration low in the central nervous system1. But one component of glutamate release from neurons is calcium-independent, suggesting a non-vesicular release that may be due to a reversal of glutamate uptake2,3. The activity of the electrogenic glutamate uptake carrier can be monitored by measuring the membrane current it produces4, and uptake is activated by intracellular potassium ions5. Here we report that raising the potassium concentration around glial cells evokes an outward current component produced by reversed glutamate uptake. This current is activated by intracellular glutamate and sodium, inhibited by extracellular glutamate and sodium, and increased by membrane depolarization. These results demonstrate a non-vesicular mechanism for the release of glutamate from glial cells and neurons. This mechanism may contribute to the neurotoxic rise in extracellular glutamate concentration during brain anoxia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hertz, L. Prog. Neurobiol. 13, 277–323 (1979).

    Article  CAS  Google Scholar 

  2. Miller, A. M. & Schwartz, E. A. J. Physiol., Lond. 334, 325–350 (1983).

    Article  CAS  Google Scholar 

  3. Nicholls, D. G., Sihra, T. S. & Sanchez-Prieto, J. J. Neurochem. 49, 50–57 (1987).

    Article  CAS  Google Scholar 

  4. Brew, H. & Attwell, D. Nature 327, 707–709 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Barbour, B., Brew, H. & Attwell, D. Nature 335, 433–435 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Sarantis, M. & Attwell, D. Brain Res. 516, 322–325 (1990).

    Article  CAS  Google Scholar 

  7. Cull-Candy, S. G., Howe, J. R. & Ogden, D. J. Physiol., Lond. 400, 189–222 (1988).

    Article  CAS  Google Scholar 

  8. Kanner, B. I. & Schuldiner, S. Crit. Rev. Biochem. 22, 1–38 (1987).

    Article  CAS  Google Scholar 

  9. Walz, W. & Hertz, L. J. Neurochem. 39, 70–77 (1982).

    Article  CAS  Google Scholar 

  10. Newman, E. A. Nature 317, 809–811 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Newman, E. A. Nature 309, 155–157 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Brew, H., Gray, P., Mobbs, P. & Attwell, D. Nature 324, 466–468 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Ballanyi, K., Grafe, P. & Ten Bruggencate, G. J. Physiol., Lond. 382, 159–174 (1987).

    Article  CAS  Google Scholar 

  14. Berger, S. J., Carter, J. G. & Lowry, O. H. J. Neurochem. 28, 149–158 (1977).

    Article  CAS  Google Scholar 

  15. Schousboe, A., Fosmark, H. & Hertz, L. J. Neurochem. 25, 909–911 (1975).

    Article  CAS  Google Scholar 

  16. Kvamme, E., Schousboe, A., Hertz, L., Torgner, I. A. & Svenneby, G. Neurochem. Res. 10, 993–1008 (1985).

    Article  CAS  Google Scholar 

  17. Rothman, S. M. & Olney, J. W. Trends Neurosci. 10, 299–302 (1987).

    Article  CAS  Google Scholar 

  18. Sanchez-Prieto, J. & Gonzalez, P. J. Neurochem. 50, 1322–1324 (1988).

    Article  CAS  Google Scholar 

  19. Walz, W. & Hertz, L. Prog. Neurobiol. 20, 133–183 (1983).

    Article  CAS  Google Scholar 

  20. Siesjö, B. News physiol. Sci. 5, 120–125 (1990).

    Google Scholar 

  21. Ikeda, M., Nakazawa, T., Abe, K., Kaneko, T. & Yamatsu, K. Neurosci. Lett. 96, 202–206 (1989).

    Article  CAS  Google Scholar 

  22. Sontheimer, H., Kettenmann, H., Backus, K. H. & Schachner, M. Glia 1, 328–336 (1988).

    Article  CAS  Google Scholar 

  23. Sakmann, B. & Trube, G. J. Physiol. Lond. 347, 641–657 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szatkowski, M., Barbour, B. & Attwell, D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348, 443–446 (1990). https://doi.org/10.1038/348443a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348443a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing