Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glutamate release in severe brain ischaemia is mainly by reversed uptake

Abstract

The release of glutamate during brain anoxia or ischaemia triggers the death of neurons1, causing mental or physical handicap. The mechanism of glutamate release is controversial, however. Four release mechanisms have been postulated: vesicular release dependent on external calcium2 or Ca2+ released from intracellular stores3; release through swelling-activated anion channels4; an indomethacin-sensitive process in astrocytes5,6,7; and reversed operation of glutamate transporters8,9. Here we have mimicked severe ischaemia in hippocampal slices and monitored glutamate release as a receptor-gated current in the CA1 pyramidal cells that are killed preferentially in ischaemic hippocampus. Using blockers of the different release mechanisms, we demonstrate that glutamate release is largely by reversed operation of neuronal glutamate transporters, and that it plays a key role in generating the anoxic depolarization that abolishes information processing in the central nervous system a few minutes after the start of ischaemia. A mathematical model incorporating K+ channels, reversible uptake carriers and NMDA (N-methyl- D-aspartate) receptor channels reproduces the main features of the response to ischaemia. Thus, transporter-mediated glutamate homeostasis fails dramatically in ischaemia: instead of removing extracellular glutamate to protect neurons, transporters release glutamate, triggering neuronal death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ischaemia-evoked current changes in pyramidal cells.
Figure 2: Pyramidal cell response to raised [K+]o and [glu]o.
Figure 3: Pharmacology of glutamate release.
Figure 4: Effects of preloading with the slowly transported glutamate analogue PDC.
Figure 5: Blocking reversed uptake reduces glutamate release before the anoxic depolarization.
Figure 6: Simulation of the response to ischaemia.

Similar content being viewed by others

References

  1. Choi, D. W. & Rothman, S. M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13, 171–182 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Drejer, J., Benveniste, H., Diemer, N. H. & Schousboe, A. Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J. Neurochem. 45, 145 –151 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Katchman, A. N. & Hershkowitz, N. Early anoxia-induced vesicular glutamate release results from mobilization of calcium from intracellular stores. J. Neurophysiol. 70, 1– 7 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Bednar, M. M., Kohut, J. J., Kimelberg, H. K., Gross, J. J. & Gross, C. E. In vitro evidence supporting two mechanisms of action for the anion transport inhibitor L-644,711 in cerebral ischaemia. Neurol. Res. 14, 53– 56 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Parpura, V. et al. Glutamate-mediated astrocyte–neuron signalling. Nature 369, 744–747 ( 1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Hassinger, T. D. et al. Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J. Neurobiol. 28, 159–170 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281– 285 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Szatkowski, M., Barbour, B. & Attwell, D. Nonvesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348, 443–446 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Szatkowski, M. & Attwell, D. Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci. 17, 359– 365 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Hansen, A. J. Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65, 101–148 ( 1985).

    Article  CAS  PubMed  Google Scholar 

  11. Basarsky, T. A., Feighan, D. & MacVicar, B. A. Glutamate release through volume-activated channels during spreading depression. J. Neurosci. 19, 6439–6445 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Lerma, J. & Martin del Rio, R. Chloride transport blockers prevent N-methyl-D-aspartate receptor-channel complex activation. Mol. Pharmacol. 41, 217–222 (1992).

    CAS  PubMed  Google Scholar 

  13. Walz, W., Klimaszewski, A. & Paterson, I. A. Glial swelling in ischemia: a hypothesis. Dev. Neurosci. 15, 216–225 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Sarantis, M. et al. Glutamate uptake from the synaptic cleft does not shape the decay of the non-NMDA component of the synaptic current. Neuron 11, 541–549 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  15. Spruston, N., Jonas, P. & Sakmann, B. Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. (Lond.) 482, 325–352 (1995).

    Article  CAS  Google Scholar 

  16. Madl, J. E. & Burgesser, K. Adenosine triphosphate depletion reverses sodium-dependent, neuronal uptake of glutamate in rat hippocampal slices. J. Neurosci. 13, 4429– 4444 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Storm-Mathiesen, J. et al. Ultrastructural immunocytochemical observations on the localization, metabolism and transport of glutamate in normal and ischemic brain tissue. Prog. Brain Res. 94, 225– 241 (1992).

    Article  Google Scholar 

  18. Attwell, D., Barbour, B. & Szatkowski, M. Nonvesicular release of neurotransmitter. Neuron 11, 401–407 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  19. Levy, L. M., Warr, O. & Attwell, D. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a CHO cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci. 18, 9620–9628 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Gundersen, V., Danbolt, N. C., Ottersen, O. P. & Storm-Mathisen, J. Demonstration of glutamate/aspartate uptake activity in nerve endings by use of antibodies recognizing exogenous D-aspartate. Neuroscience 57, 97–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Zerangue, N. & Kavanaugh, M. P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634– 637 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Billups, B. & Attwell, D. Modulation of non-vesicular glutamate release by pH. Nature 379, 171– 174 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Sah, P., Gibb, A. J. & Gage, P. W. Potassium current activated by depolarization of dissociated neurons from adult guinea pig hippocampus. J. Gen. Physiol. 92, 263–278 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Nowicky, A. V. & Duchen, M. R. Changes in [Ca2+]i and membrane currents during impaired mitochondrial metabolism in dissociated rat hippocampal neurons. J. Physiol. (Lond.) 507, 131–145 ( 1998).

    Article  CAS  Google Scholar 

  25. Jahr, C. E. & Stevens, C. F. Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J. Neurosci. 10, 3178–3182 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Patneau, D. K. & Mayer, M. L. Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J. Neurosci. 10, 2385–2399 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Raley, K. M. & Lipton, P. NMDA receptor activation accelerates ischemic energy depletion in the hippocampal slice and the demonstration of a threshold for ischemic damage to protein synthesis. Neurosci. Lett. 110, 118–123 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  28. Friedman, J. E. & Haddad, G. G. Anoxia induces an increase in intracellular sodium in rat central neurons in vitro. Brain Res. 663, 329–334 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. McBain, C. J., Traynelis, S. F. & Dingledine, R. Regional variation of extracellular space in the hippocampus. Science 249, 674–677 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Roettger, V. & Lipton, P. Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia. Neuroscience 75, 677–685 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Rutledge and H. Kimelberg for providing L-644,711, and J. Ashmore, P. Behe, S. Brickley, B. Clark, D. Colquhoun, F. Edwards, M. Farrant, A. Gibb, M. Hamann, M. Häusser and A. Silver for comments on the manuscript. This work was supported by the Wellcome Trust, European Community and the Shionogi Company Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Attwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, D., Oshima, T. & Attwell, D. Glutamate release in severe brain ischaemia is mainly by reversed uptake . Nature 403, 316–321 (2000). https://doi.org/10.1038/35002090

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002090

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing