Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins

Abstract

Integration of signalling pathways initiated by receptor tyrosine kinases and integrins is essential for growth-factor-mediated biological responses. Here we show that co-stimulation of growth-factor receptors and integrins activates the focal-adhesion kinase (FAK) family to promote outgrowth of neurites in PC12 and SH-SY5Y cells. Pyk2 and FAK associate with adhesion-based complexes that contain epidermal growth factor (EGF) receptors, through their carboxy- and amino-terminal domains. Expression of the C-terminal domain of Pyk2 or of FAK is sufficient to block neurite outgrowth, but not activation of extracellular-signal-regulated kinase (ERK). Moreover, activation and autophosphorylation of Pyk2/FAK, as well as of effectors of their adhesion-targeting domains, such as paxillin, are important for propagation of signals that control neurite formation. Thus, Pyk2/FAK have important functions in signal integration proximal to integrin/growth-factor receptor complexes in neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of integrin engagement on neurite outgrowth in PC12 or SH-SY5Y cells treated with EGF or IGF-1.
Figure 2: Activation of MAP kinase in PC12 and PC12-PDGFR cells plated on plastic or collagen I-coated dishes.
Figure 3: Activation of Pyk2 and FAK by growth factors in PC12 or SH-SY5Y cells.
Figure 4: Assembly of a signalling complex at adhesion sites.
Figure 5: Inhibition of Pyk2 or FAK blocks EGF and IGF-1-induced neurite outgrowth.
Figure 6: Paxillin is involved in Pyk2-mediated neurite formation.

Similar content being viewed by others

References

  1. Ullrich, A. & Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212 (1990).

    Article  CAS  Google Scholar 

  2. Heldin, C. H. Dimerization of cell surface receptors in signal transduction. Cell 80, 213–223 (1995).

    Article  CAS  Google Scholar 

  3. Assoian, R. K. Anchorage-dependent cell cycle progression. J. Cell Biol. 136, 1–4 (1997).

    Article  CAS  Google Scholar 

  4. Renshaw, M. W., Ren, X. D. & Schwartz, M. A. Growth factor activation of MAP kinase requires cell adhesion. EMBO J. 16, 5592–5599 (1997).

    Article  CAS  Google Scholar 

  5. Schneller, M., Vuori, K. & Ruoslahti, E. Alphabeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBO J. 16, 5600–5607 (1997).

    Article  CAS  Google Scholar 

  6. Eliceiri, B. P., Klemke, R., Stromblad, S. & Cheresh, D. A. Integrin alphabeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J. Cell Biol. 140, 1255–1263 (1998).

    Article  CAS  Google Scholar 

  7. Giancotti, F. G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    Article  CAS  Google Scholar 

  8. Clark, E. A. & Brugge, J. S. Integrins and signal transduction pathways: the road taken. Science 268, 233–239 (1995).

    Article  CAS  Google Scholar 

  9. Falcioni, R. et al. Alpha 6 beta four and alpha 6 beta one integrins associate with ErbB-2 in human carcinoma cell lines. Exp. Cell Res. 236, 76–85 (1997).

    Article  CAS  Google Scholar 

  10. Sundberg, C. & Rubin, K. Stimulation of beta1 integrins on fibroblasts induces PDGF independent tyrosine phosphorylation of PDGF beta-receptors. J. Cell Biol. 132, 741–752 (1996).

    Article  CAS  Google Scholar 

  11. Moro, L. et al. Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J. 17, 6622–6632 (1998).

    Article  CAS  Google Scholar 

  12. Neet, K. & Hunter, T. Vertebrate non-receptor protein-tyrosine kinase families. Genes Cells 1, 147–169 (1996).

    Article  CAS  Google Scholar 

  13. Avraham, H., Park, S., Schinkmann, K. & Avraham, S. RAFTK/Pyk2-mediated cellular signalling. Cell Signal 12, 123–133 (2000).

    Article  CAS  Google Scholar 

  14. Hanks, S. K. & Polte, T. R. Signaling through focal adhesion kinase. Bioessays 19, 137–145 (1997).

    Article  CAS  Google Scholar 

  15. Li, J., Avraham, H., Rogers, R. A., Raja, S. & Avraham, S. Characterization of RAFTK, a novel focal adhesion kinase, and its integrin-dependent phosphorylation and activation in megakaryocytes. Blood 88, 417–428 (1996).

    CAS  Google Scholar 

  16. Astier, A. et al. The related adhesion focal tyrosine kinase is tyrosine-phosphorylated after beta1 -integrin stimulation in B cells and binds to p130 cas. J. Biol. Chem. 272, 228–232 (1997).

    Article  CAS  Google Scholar 

  17. Zheng, C. et al. Differential regulation of Pyk2 and focal adhesion kinase (FAK). The C-terminal domain of FAK confers response to cell adhesion. J. Biol. Chem. 273, 2384–2389 (1998).

    Article  CAS  Google Scholar 

  18. Schlaepfer, D. D. & Hunter, T. Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol. 8, 151–157 (1998).

    Article  CAS  Google Scholar 

  19. Lev, S. et al. Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature 376, 737–745 (1995).

    Article  CAS  Google Scholar 

  20. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A. & Schlessinger, J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383, 547–550 (1996).

    Article  CAS  Google Scholar 

  21. Lakkakorpi, P. T. et al. Stable association of PYK2 and p130 (Cas) in osteoclasts and their co-localization in the sealing zone. J. Biol. Chem. 274, 4900–4907 (1999).

    Article  CAS  Google Scholar 

  22. Schaller, M. D. & Parsons, J. T. Focal adhesion kinase and associated proteins. Curr. Opin. Cell Biol. 6, 705–710 (1994).

    Article  CAS  Google Scholar 

  23. Girault, J. A., Costa, A., Derkinderen, P., Studler, J. M. & Toutant, M. FAK and PYK2/CAKbeta in the nervous system: a link between neuronal activity, plasticity and survival? Trends Neurosci. 22, 257–263 (1999).

    Article  CAS  Google Scholar 

  24. Ohba, T., Ishino, M., Aoto, H. & Sasaki, T. Interaction of two proline-rich sequences of cell adhesion kinase beta with SH3 domains of p130 Cas -related proteins and a GTPase-activating protein, Graf. Biochem. J. 330, 1249–1254 (1998).

    Article  CAS  Google Scholar 

  25. Ueki, K. et al. Integrin-mediated signal transduction in cells lacking focal adhesion kinase p125 FAK. FEBS Lett. 432, 197–201 (1998).

    Article  CAS  Google Scholar 

  26. Sieg, D. J. et al. Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK-cell migration. EMBO J. 17, 5933–5947 (1998).

    Article  CAS  Google Scholar 

  27. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  28. Lavenius, E., Parrow, V., Nanberg, E. & Pahlman, S. Basic FGF and IGF-I promote differentiation of human SH-SY5Y neuroblastoma cells in culture. Growth Factors 10, 29–39 (1994).

    Article  CAS  Google Scholar 

  29. Fujii, D. K., Massoglia, S. L., Savion, N. & Gospodarowicz, D. Neurite outgrowth and protein synthesis by PC12 cells as a function of substratum and nerve growth factor. J. Neurosci. 2, 1157–1175 (1982).

    Article  CAS  Google Scholar 

  30. Tomaselli, K. J. et al. A neuronal cell line (PC12) expresses two beta1-class integrins — alpha one beta 1 and alpha three beta 1 — that recognize different neurite outgrowth-promoting domains in laminin. Neuron 5, 651–662 (1990).

    Article  CAS  Google Scholar 

  31. Traverse, S., Gomez, N., Paterson, H., Marshall, C. & Cohen, P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J. 288, 351–355 (1992).

    Article  CAS  Google Scholar 

  32. Traverse, S. et al. EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor. Curr. Biol. 4, 694–701 (1994).

    Article  CAS  Google Scholar 

  33. Dikic, I., Schlessinger, J. & Lax, I. PC12 cells overexpressing the insulin receptor undergo insulin-dependent neuronal differentiation. Curr. Biol. 4, 702–708 (1994).

    Article  CAS  Google Scholar 

  34. Rankin, S., Hooshmand-Rad, R., Claesson-Welsh, L. & Rozengurt, E. Requirement for phosphatidylinositol 3′-kinase activity in platelet-derived growth factor-stimulated tyrosine phosphorylation of p125 focal adhesion kinase and paxillin. J. Biol. Chem. 271, 7829–7834 (1996).

    Article  CAS  Google Scholar 

  35. Leventhal, P. S., Shelden, E. A., Kim, B. & Feldman, E. L. Tyrosine phosphorylation of paxillin and focal adhesion kinase during insulin-like growth factor-I-stimulated lamellipodial advance. J. Biol. Chem. 272, 5214–5218 (1997).

    Article  CAS  Google Scholar 

  36. Schlaepfer, D. D., Jones, K. C. & Hunter, T. Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol. Cell Biol. 18, 2571–2585 (1998).

    Article  CAS  Google Scholar 

  37. Tokiwa, G., Dikic, I., Lev, S. & Schlessinger, J. Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science 273, 792–794 (1996).

    Article  CAS  Google Scholar 

  38. Blaukat, A. et al. Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J. Biol. Chem. 274, 14893–14901 (1999).

    Article  CAS  Google Scholar 

  39. Dolfi, F. et al. The adaptor protein Crk connects multiple cellular stimuli to the JNK signaling pathway. Proc. Natl Acad. Sci. USA 95, 15394–15399 (1998).

    Article  CAS  Google Scholar 

  40. Turner, C. E. Paxillin: a cytoskeletal target for tyrosine kinases. Bioessays 16, 47–52 (1994).

    Article  CAS  Google Scholar 

  41. Turner, C. E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).

    Article  CAS  Google Scholar 

  42. Petit, V. et al. Phosphorylation of tyrosine residues 31 and 118 on paxillin regulates cell migration through an association with CRK in NBT-II cells. J. Cell Biol. 148, 957–970 (2000).

    Article  CAS  Google Scholar 

  43. Sieg, D. J. et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biol. 2, 249–256 (2000).

    Article  CAS  Google Scholar 

  44. Girault, J. A., Labesse, G., Mornon, J. P. & Callebaut, I. The N-termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem. Sci. 24, 54–57 (1999).

    Article  CAS  Google Scholar 

  45. Astier, A. et al. The related adhesion focal tyrosine kinase differentially phosphorylates p130 Cas and the Cas-like protein, p105 HEF1. J. Biol. Chem. 272, 19719–19724 (1997).

    Article  CAS  Google Scholar 

  46. Menegon, A. et al. FAK+ and PYK2/CAKbeta, two related tyrosine kinases highly expressed in the central nervous system: similarities and differences in the expression pattern. Eur. J. Neurosci. 11, 3777–3788 (1999).

    Article  CAS  Google Scholar 

  47. Reiske, H. R. et al. Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase- promoted cell migration. J. Biol. Chem. 274, 12361–12366 (1999).

    Article  CAS  Google Scholar 

  48. Daniels, R. H., Hall, P. S. & Bokoch, G. E. Membrane targeting of p21 -activated kinase one (PAK1) induces neurite outgrowth from PC12 cells. EMBO J. 17, 754–764 (1998).

    Article  CAS  Google Scholar 

  49. Obermeier, A. et al. PAK promotes morphological changes by acting upstream of Rac. EMBO J. 17, 4328–4339 (1998).

    Article  CAS  Google Scholar 

  50. Fagerstrom, S., Pahlman, S. & Nanberg, E. Protein kinase C-dependent tyrosine phosphorylation of p130 cas in differentiating neuroblastoma cells. J. Biol. Chem. 273, 2336–2343 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Claesson-Welsh, F. Giancotti, T. Hunter, E. Nånberg, L. Rönnstrand, D. Schlaepfer, J. Schlessinger, S. Thomas, K. Vuori and A. Yoshimura for reagents. We also thank L. Claesson-Welsh and J. Dixelius for help with immunofluorescence microscopy. We are grateful to C-H. Heldin, L. Claesson-Welsh and A. Moustakas for comments on the manuscript. A.B. was supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (DFG) and I.D. is a Boehringer Ingelheim Fonds Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Dikic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivankovic-Dikic, I., Grönroos, E., Blaukat, A. et al. Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins. Nat Cell Biol 2, 574–581 (2000). https://doi.org/10.1038/35023515

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing