Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

αvβ5 integrin recruits the CrkII–Dock180–Rac1 complex for phagocytosis of apoptotic cells

Abstract

Integrin receptors are important for the phagocytosis of apoptotic cells. However, little is known about their function in mediating internalization, as previous studies used blocking antibodies for the inhibition of binding. Here we show that the αvβ5 receptor mediates both binding and internalization of apoptotic cells. Internalization is dependent upon signalling through the β5 cytoplasmic tail, and engagement of the αvβ5 heterodimer results in recruitment of the p130cas–CrkII–Dock180 molecular complex, which in turn triggers Rac1 activation and phagosome formation. In addition to defining integrin-receptor signalling as critical for the internalization of apoptotic material, our results also constitute the first evidence in human cells that the CED-2–CED-5–CED-10 complex defined in Caenorhabditis elegans is functionally analagous to the CrkII–Dock180–Rac1 molecular complex in mammalian cells. By linking the αvβ5 receptor to this molecular switch, we reveal an evolutionarily conserved signalling pathway that is responsible for the recognition and internalization of apoptotic cells by both professional and non-professional phagocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 293T cells efficiently capture apoptotic cells.
Figure 2: 293T cells capture apoptotic cells in a manner that is similar to immature dendritic cells.
Figure 3: The β5 integrin regulates phagocytosis of apoptotic cells.
Figure 4: αvβ5 activation results in recruitment of the p130cas–CrkII–Dock180 complex.
Figure 5: CrkII is recruited to the membrane for phagosome formation and is critical for the phagocytosis of apoptotic cells.
Figure 6: A role for Rac1 in αvβ5-mediated phagocytosis.

Similar content being viewed by others

References

  1. Savill, J. Apoptosis: phagocytic docking without shocking. Nature 392, 442–443 (1998).

    Article  CAS  Google Scholar 

  2. Platt, N., da Silva, R. P. & Gordon, S. Recognizing death: the phagocytosis of apoptotic cells . Trends Cell Biol. 8, 365– 372 (1998).

    Article  CAS  Google Scholar 

  3. Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  CAS  Google Scholar 

  4. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I- restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  Google Scholar 

  5. Inaba, K. et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells . J. Exp. Med. 188, 2163– 2173 (1998).

    Article  CAS  Google Scholar 

  6. Albert, M. L. & Bhardwaj, N. Resurrecting the Dead: DCs cross-present antigen derived from apoptotic cells on MHC I. The Immunologist 6, 194–199 (1998).

    CAS  Google Scholar 

  7. Albert, M. L. et al. Immature dendritic cells phagocytose apoptotic cells via α vβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188, 1359– 1368 (1998).

    Article  CAS  Google Scholar 

  8. Kondo, K., Watanabe, T., Sasaki, H., Uehara, Y. & Oishi, M. Induction of in vitro differentiation of mouse embryonal carcinoma (F9) and erythroleukemia (MEL) cells by herbimycin A, an inhibitor of protein phosphorylation. J. Cell Biol. 109, 285–293 (1989).

    Article  CAS  Google Scholar 

  9. Hsu, C. Y. et al. Kinetic analysis of the inhibition of the epidermal growth factor receptor tyrosine kinase by Lavendustin-A and its analogue. J. Biol. Chem. 266, 21105–21112 (1991).

    CAS  PubMed  Google Scholar 

  10. Hughes, J., Liu, Y., Van Damme, J. & Savill, J. Human glomerular mesangial cell phagocytosis of apoptotic neutrophils: mediation by a novel CD36-independent vitronectin receptor/ thrombospondin recognition mechanism that is uncoupled from chemokine secretion. J. Immunol. 158, 4389–4397 (1997).

    CAS  PubMed  Google Scholar 

  11. McLean, J. W., Vestal, D. J., Cheresh, D. A. & Bodary, S. C. cDNA sequence of the human integrin beta 5 subunit. J. Biol. Chem. 265, 17126–17131 (1990).

    CAS  PubMed  Google Scholar 

  12. Petch, L. A., Bockholt, S. M., Bouton, A., Parsons, J. T. & Burridge, K. Adhesion-induced tyrosine phosphorylation of the p130 src substrate. J. Cell Sci. 108, 1371–1379 (1995).

    CAS  PubMed  Google Scholar 

  13. Birge, R. B., Fajardo, J. E., Mayer, B. J. & Hanafusa, H. Tyrosine-phosphorylated epidermal growth factor receptor and cellular p130 provide high affinity binding substrates to analyze Crk-phosphotyrosine-dependent interactions in vitro. J. Biol. Chem. 267, 10588–10595 (1992).

    CAS  PubMed  Google Scholar 

  14. Klemke, R. L. et al. CAS/Crk coupling serves as a `molecular switch' for induction of cell migration. J. Cell Biol. 140, 961 –972 (1998).

    Article  CAS  Google Scholar 

  15. Kirsch, K. H., Georgescu, M. M., Ishimaru, S. & Hanafusa, H. CMS: an adapter molecule involved in cytoskeletal rearrangements. Proc. Natl Acad. Sci. USA 96, 6211– 6216 (1999).

    Article  CAS  Google Scholar 

  16. Birge, R. B., Knudsen, B. S., Besser, D. & Hanafusa, H. SH2 and SH3-containing adaptor proteins: redundant or independent mediators of intracellular signal transduction. Genes Cells 1 , 595–613 (1996).

    Article  CAS  Google Scholar 

  17. Steinkamp, J. A., Wilson, J. S., Saunders, G. C. & Stewart, C. C. Phagocytosis: flow cytometric quantitation with fluorescent microspheres. Science 215, 64– 66 (1982).

    Article  CAS  Google Scholar 

  18. Sander, E. E. et al. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell–cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143, 1385– 1398 (1998).

    Article  CAS  Google Scholar 

  19. Genot, E., Cleverley, S., Henning, S. & Cantrell, D. Multiple p21ras effector pathways regulate nuclear factor of activated T cells . EMBO J. 15, 3923–3933 (1996).

    Article  CAS  Google Scholar 

  20. Reddien, P. W. & Horvitz, H. R. Ced-2/CrkII and Ced-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol. 2, 131– 136 (2000).

    Article  CAS  Google Scholar 

  21. Nolan, K. M. et al. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 12, 3337– 3342 (1998).

    Article  CAS  Google Scholar 

  22. Kiyokawa, E. et al. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 12, 3331–3336 (1998).

    Article  CAS  Google Scholar 

  23. Kiyokawa, E., Hashimoto, Y., Kurata, T., Sugimura, H. & Matsuda, M. Evidence that DOCK180 up-regulates signals from the CrkII–p130(Cas) complex. J. Biol. Chem. 273, 24479–24484 ( 1998).

    Article  CAS  Google Scholar 

  24. Hasegawa, H. et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol. Cell. Biol. 16, 1770–1776 (1996).

    Article  CAS  Google Scholar 

  25. Erickson, M. R., Galletta, B. J. & Abmayr, S. M. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J. Cell Biol. 138, 589–603 (1997).

    Article  CAS  Google Scholar 

  26. Paululat, A., Holz, A. & Renkawitz-Pohl, R. Essential genes for myoblast fusion in Drosophila embryogenesis. Mech. Dev. 83, 17– 26 (1999).

    Article  CAS  Google Scholar 

  27. Bhardwaj, N. et al. Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells . J. Clin. Invest. 94, 797– 807 (1994).

    Article  CAS  Google Scholar 

  28. Bender, A., Sapp, M., Schuler, G., Steinman, R.M. & Bhardwaj, N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Methods 196, 121–135 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Rodriguez for assistance with the IF studies, S. Amigorena, N. Bhardwaj, R. B. Darnell, E. Fajardo and N. Hacohen for helpful discussions and critical comments, D. Cheresh for the αv and β5 gene constructs, R. M. Steinman and M. Nussenzweig for use of the FACScan, T. de Lange for use of the microscope, and M. Genova for assistance with the FACSort.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew L. Albert or Raymond B. Birge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, M., Kim, JI. & Birge, R. αvβ5 integrin recruits the CrkII–Dock180–Rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2, 899–905 (2000). https://doi.org/10.1038/35046549

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing