Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse

Abstract

Glycine and GABAA (γ-aminobutyric acid A) receptors are inhibitory neurotransmitter-gated Cl- channels localized in postsynaptic membranes. In some cases, GABAA receptors are also found presynaptically, but they retain their inhibitory effect as their activation reduces excitatory transmitter release1,2,3,4. Here we report evidence for presynaptic ionotropic glycine receptors, using pre- and postsynaptic recordings of a calyceal synapse in the medial nucleus of the trapezoid body (MNTB). Unlike the classical action of glycine, presynaptic glycine receptors triggered a weakly depolarizing Cl- current in the nerve terminal. The depolarization enhanced transmitter release by activating Ca2+ channels and increasing resting intraterminal Ca2+ concentrations. Repetitive activation of glycinergic synapses on MNTB neurons also enhanced glutamatergic synaptic currents, indicating that presynaptic glycine receptors are activated by glycine spillover. These results reveal a novel site of action of the transmitter glycine, and indicate that under certain conditions presynaptic Cl- channels may increase transmitter release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhancement of EPSCs by glycine.
Figure 2: Presynaptic locus of glycine action.
Figure 3: Glycine activates a presynaptic depolarizing Cl- current.
Figure 4: Glycine enhances release by depolarizing the nerve terminal.
Figure 5: Spillover to presynaptic glycine receptors.

Similar content being viewed by others

References

  1. Eccles, J. C., Schmidt, R. F. & Willis, W. D. Pharmacological studies of presynaptic inhibition. J. Physiol. 168, 500–530 (1963).

    Article  CAS  Google Scholar 

  2. Tachibana, M. & Kaneko, A. γ-Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. Proc. Natl Acad. Sci. USA 84, 3501–3505 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Zhang, S. J. & Jackson, M. B. GABAA receptor activation and the excitability of nerve terminals in the rat posterior pituitary. J. Physiol. (Lond.) 483, 583–595 (1995).

    Article  CAS  Google Scholar 

  4. Pouzat, C. & Marty, A. Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket cells. J. Neurosci. 19, 1675–1690 (1999).

    Article  CAS  Google Scholar 

  5. Forsythe, I. D. & Barnes-Davies, M. The binaural auditory pathway: excitatory amino acid receptors mediate dual timecourse excitatory postsynaptic currents in the rat medial nucleus of the trapezoid body. Proc. R. Soc. Lond. B. 25, 151–157 (1993).

    ADS  Google Scholar 

  6. Taschenberger, H. & von Gersdorff, H. Fine tuning an auditory synapses for speed and fidelity during a critical developmental period. J. Neurosci. 24, 9162–9173 (2000).

    Article  Google Scholar 

  7. Bormann, J., Hamill, O. P. & Sakmann, B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. (Lond.) 385, 243–286 (1987).

    Article  CAS  Google Scholar 

  8. Isaacson, J. S. GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse. J. Neurophysiol. 80, 1571–1576 (1998).

    Article  CAS  Google Scholar 

  9. Takahashi, T., Kajikawa, Y. & Tsujimoto, T. G-Protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. J. Neurosci. 18, 3138–3146 (1998).

    Article  CAS  Google Scholar 

  10. Martin, A. R. In Handbook of Physiology, Sec. I, The Nervous System (eds Brookhard, J. M., Mountscastle, V. B., Kandel, E. R. & Geiger, S. R.) 329–356 (Am. Physiol. Soc., Bethesda, 1977).

    Google Scholar 

  11. Atluri, P. P. & Regehr, W. G. Delayed release of neurotransmitter from cerebellar granule cells. J. Neurosci. 18, 8214–8227 (1998).

    Article  CAS  Google Scholar 

  12. Wang, L. Y. & Kaczmarek, L. K. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394, 384–388 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Borst, J. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Akaike, N. Gramicidin perforated patch recording and intracellular chloride activity in excitable cells. Prog. Biophys. Mol. Biol. 65, 251–264 (1996).

    Article  CAS  Google Scholar 

  15. Tachibana, M., Okada, T., Arimura, T., Kobayashi, K. & Piccolino, M. Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina. J. Neurosci. 13, 2898–2909 (1993).

    Article  CAS  Google Scholar 

  16. Cuttle, M. F., Tsujimoto, T., Forsythe, I. D. & Takahashi, T. Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J. Physiol. (Lond.) 512, 723–729 (1998).

    Article  CAS  Google Scholar 

  17. Borst, J. G. & Sakmann, B. Facilitation of presynaptic calcium currents in the rat brainstem. J. Physiol. (Lond.) 513, 149–155 (1998).

    Article  CAS  Google Scholar 

  18. Isaacson, J. S., Solis, J. M. & Nicoll, R. A. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10, 165–175 (1993).

    Article  CAS  Google Scholar 

  19. Dittman, J. S. & Regehr, W. G. Mechanism and kinetics of heterosynaptic depression at a cerebellar synapse. J. Neurosci. 17, 9048–9059 (1997).

    Article  CAS  Google Scholar 

  20. Min, M. Y., Rusakov, D. A. & Kullmann, D. M. Activation of AMPA, kainate, and metabotropic receptors at hippocampal mossy fiber synapses: role of glutamate diffusion. Neuron 21, 561–570 (1998).

    Article  CAS  Google Scholar 

  21. Mitchell, S. J. & Silver, R. A. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature 404, 498–502 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Banks, M. I. & Smith, P. H. Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J. Neurosci. 12, 2819–2837 (1992).

    Article  CAS  Google Scholar 

  23. Wu, S. H. & Kelly, J. B. Synaptic pharmacology of the superior olivary complex studied in mouse brain slice. J. Neurosci. 12, 3084–3097 (1992).

    Article  CAS  Google Scholar 

  24. Grothe, B. & Sanes, D. H. Synaptic inhibition influences the temporal coding properties of medial superior olivary neurons: an in vitro study. J. Neurosci. 14, 1701–1709 (1994).

    Article  CAS  Google Scholar 

  25. Funabiki, K., Koyano, K. & Ohmori, H. The role of GABAergic inputs for coincidence detection in the neurones of nucleus laminaris of the chick. J. Physiol. (Lond.) 508, 851–869 (1998).

    Article  CAS  Google Scholar 

  26. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Bollmann, J. H., Sakmann, B. & Borst, J. G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Brenowitz, H. von Gersdorff and C. Jahr for comments on the manuscript. Supported by NIH grants and a Fogarty International Center Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence O. Trussell.

Supplementary information

Figure 1.

Pre- and postsynaptic glycine-evoked currents are independent (GIF 13.1 KB)

Upper panels show postsynaptic glycine-evoked currents, with holding potentials indicated on the left. Lowest panel shows currents recorded simultaneously in the presynaptic terminal, with holding potentials indicated on the left. Glycine (1 mM) was applied during the period marked by the black bar at the top of the Figure. The experiment illustrates that the amplitude and time course of the presynaptic glycine response was independent of the amplitude and direction of chloride current flow in the postsynaptic cell. Thus, the presynaptic response is most likely due to glycine receptors in the presynaptic terminal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turecek, R., Trussell, L. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411, 587–590 (2001). https://doi.org/10.1038/35079084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079084

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing