Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Receptive field dynamics in adult primary visual cortex

Abstract

THE adult brain has a remarkable ability to adjust to changes in sensory input. Removal of afferent input to the somatosensory, auditory, motor or visual cortex results in a marked change of cortical topography1–10. Changes in sensory activity can, over a period of months, alter receptive field size and cortical topography11. Here we remove visual input by focal binocular retinal lesions and record from the same cortical sites before and within minutes after making the lesion and find immediate striking increases in receptive field size for cortical cells with receptive fields near the edge of the retinal scotoma. After a few months even the cortical areas that were initially silenced by the lesion recover visual activity, representing retinotopic loci surrounding the lesion. At the level of the lateral geniculate nucleus, which provides the visual input to the striate cortex, a large silent region remains. Furthermore, anatomical studies show that the spread of geniculocortical afferents is insufficient to account for the cortical recovery. The results indicate that the topographic reorganization within the cortex was largely due to synaptic changes intrinsic to the cortex, perhaps through the plexus of long-range horizontal connections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kalaska, J. & Pomeranz, B. J. Neurophysiol. 42, 618–633 (1979).

    Article  CAS  Google Scholar 

  2. Merzenich, M. M. et al. J. comp. Neurol. 224, 591–605 (1984).

    Article  CAS  Google Scholar 

  3. Clark, S. A., Allard, T., Jenkins, W. M. & Merzenich, M. M. Nature 332, 444–445 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Sanes, J. N., Suner, S., Lando, J. F. & Donoghue, J. P. Proc. natn. Acad. Sci. U.S.A. 85, 2003–2007 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Sanes, J. N., Suner, S. & Donoghue, J. P. Expl Brain Res. 79, 479–491 (1990).

    Article  CAS  Google Scholar 

  6. Robertson, D. & Irvine, D. R. F. J. comp. Neurol. 282, 456–471 (1989).

    Article  CAS  Google Scholar 

  7. Cusick, C. G., Wall, J. T., Whiting, J. H. Jr & Wiley, R. G. Brain Res. 537, 355–358 (1990).

    Article  CAS  Google Scholar 

  8. Gilbert, C. D., Hirsch, J. A. & Wiesel, T. N. in Cold Spring Harbor Symp. quant., Biol. 55, 663–677 (1990).

    Google Scholar 

  9. Kaas, J. H. et al. Science 248, 229–231 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Heinen, S. J. & Skavenski, A. A. Expl Brain Res. 83, 670–674 (1991).

    Article  CAS  Google Scholar 

  11. Jenkins, W. M., Merzenich, M. M., Ochs, M. T., Allard, T. & Guic-Robles, E. J. Neurophysiol 63, 82–104 (1990).

    Article  CAS  Google Scholar 

  12. Calford, M. B. & Tweedale, R. Nature 332, 446–448 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Donoghue, J. P., Suner, S. & Sanes, J. N. Expl Brain Res. 79, 479–491 (1990).

    Article  Google Scholar 

  14. Devor, M. & Wall, P. D. Nature 276, 75–76 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Eysel, U. T., Gonzalez-Aguilar, F. & Mayer, U. Expl Brain Res. 41, 256–263 (1981).

    CAS  Google Scholar 

  16. Gilbert, C. D. & Wiesel, T. N. Nature 280, 120–125 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Gilbert, C. D. & Wiesel, T. N. J. Neurosci. 3, 1116–1133 (1983).

    Article  CAS  Google Scholar 

  18. Rockland, K. S. & Lund, J. S. Brain Res. 169, 19–40 (1982).

    Google Scholar 

  19. Rockland, K. S. & Lund, J. S. J. comp. Neurol. 216, 303–318 (1983).

    Article  CAS  Google Scholar 

  20. Martin, K. A. C. & Whitteridge, D. J. Physiol. 353, 463–504 (1984).

    Article  CAS  Google Scholar 

  21. Gilbert, C. D. & Wiesel, T. N. Vison Res. 30, 1689–1701 (1990).

    Article  CAS  Google Scholar 

  22. Ts'o, D., Gilbert, C. & Wiesel, T. N. J. Neurosci. 6, 1160–1170 (1986).

    Article  CAS  Google Scholar 

  23. T'o, D. & Gilbert, C. J. Neurosci. 8, 1712–1727 (1988).

    Article  Google Scholar 

  24. Gilbert, C. D. & Wiesel, T. N. J. Neurosci. 9, 2432–2442 (1989).

    Article  CAS  Google Scholar 

  25. Yarbus, A. L. Biophysics, 2, 683–690 (1957).

    Google Scholar 

  26. Krauskopf, J. Am. J. Pyschol. 80, 632–637 (1961).

    Google Scholar 

  27. Crane, H. D. & Piantanida, T. P. Science 221, 1078–1079 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Ramachandran, V. S. & Gregory, R. L. Nature 350, 699–702 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Paradiso, M. A. & Nakayama, K. Vision Res. 31, 1221–1236 (1991).

    Article  CAS  Google Scholar 

  30. Kanizsa, G. Organization in Vision. Essays on Gestalt Perception (Praeger, New York: 1979).

    Google Scholar 

  31. McKee, S. P. & Westheimer, G. Perception & Psychophysics 24, 25–62 (1978).

    Article  Google Scholar 

  32. Fendick, M. & Westheimer, G. Vision Res. 23, 145–150 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, C., Wiesel, T. Receptive field dynamics in adult primary visual cortex. Nature 356, 150–152 (1992). https://doi.org/10.1038/356150a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356150a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing