Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional electrical impedance tomography

Abstract

THE electrical resistivity of mammalian tissues varies widely1–5 and is correlated with physiological function6–8. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body9–11. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem10,12. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane13. A few studies have attempted three-dimensional EIT image reconstruction14,15, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus16 with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Geddes, L. A. & Baker, L. E. Med. Biol. Engng 5, 271–293 (1967).

    Article  CAS  Google Scholar 

  2. Duck, F. A. Physical Properties of Tissue 167–223 (Academic, London, 1990).

    Book  Google Scholar 

  3. Stoy, R. D., Foster, K. R. & Schwan, H. P. Phys. Med. Biol. 27, 501–513 (1982).

    Article  CAS  Google Scholar 

  4. Pethig, R. Clin. Phys. Physiol. Meas. A8, 5–12 (1987). (see note below)

    Article  ADS  Google Scholar 

  5. McAdams, E. T. & Jossinet, J. Physiol. Meas. A16, A1–A14 (1995).

    Article  Google Scholar 

  6. Dawids, S. G. Clin. Phys. Physiol. Meas. A8, 175–180 (1987).

    Article  ADS  Google Scholar 

  7. Dijkstra, A. M. et al. J. med. Engng Technol. 17, 89–98 (1993).

    Article  CAS  Google Scholar 

  8. Holder, D. S. & Brown, B. H. in Clinical and Physiological Applications of Electrical Impedance Tomography (ed. Holder, D. S.) 47–60 (University College London Press, London, 1993).

    Google Scholar 

  9. Barber, D. C., Brown, B. H. & Freeston, I. L. Electron. Lett. 19, 933–935 (1983).

    Article  Google Scholar 

  10. Barber, D. C. & Brown, B. H. J. Phys E: Sci. Instrum. 17, 723–733 (1984).

    Article  ADS  Google Scholar 

  11. Barber, D. C. in Clinical and Physiological Applications of Electrical Impedance Tomography (ed. Holder, D. S.) 47–60 (University College London Press, London 1993).

    Google Scholar 

  12. Barber, D. C. & Brown, B. H. in Inverse Problems in Partial Differential Equations (eds. Colton, D., Ewing, R. Rundell, W.) 151–164 (Soc. for Industrial and Applied Mathematics, Philadelphia, 1990).

    Google Scholar 

  13. Rabbani, K. S. & Kabir, A. M. B. H. Clin. Phys. Physiol. Meas. 12, 393–402 (1991).

    Article  CAS  Google Scholar 

  14. Morucci, J. P., Granié, M., Lei, M., Chabert, M. & Marsili, P. M. Physiol. Meas. A16, A123–A128 (1995).

    Article  Google Scholar 

  15. Goble, J., Chenney, M. & Isaacson, D. Appl. Comput. Electromagn. Soc. J. 7, 128–147 (1992).

    Google Scholar 

  16. Brown, B. H. et al. (spec. iss. 1) Innov. Tech. Biol. Med. 15, 1–8 (1994).

    Google Scholar 

  17. Brown, B. H. & Seagar, A. D. Clin. Phys. Physiol. Meas. A8, 91–97 (1987).

    Article  ADS  Google Scholar 

  18. Geselowitz, D. B. IEEE Trans. biomed. Engng 18, 38–41 (1971).

    Article  CAS  Google Scholar 

  19. Kotre, C. J. Clin. Phys. Physiol. Meas. 10, 275–281 (1989).

    Article  CAS  Google Scholar 

  20. Barber, D. C. Clin. Phys. Physiol. Meas. 10, 368–370 (1989).

    Article  CAS  Google Scholar 

  21. Witsoe, D. A. & Kinnen, E. Med biol. Engng. 5, 239–248 (1967).

    Article  CAS  Google Scholar 

  22. Albert, A. Regression and the Moore-Penrose Pseudo-inverse (Academic, New York, 1972).

    MATH  Google Scholar 

  23. Golub, G. H. & Reinsch, C. Numer. Math. 14, 403–420 (1970).

    Article  MathSciNet  Google Scholar 

  24. Hansen, P. C. Numer Alg. 6, 1–35 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metherall, P., Barber, D., Smallwood, R. et al. Three-dimensional electrical impedance tomography. Nature 380, 509–512 (1996). https://doi.org/10.1038/380509a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380509a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing