Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new cytokine-receptor binding mode revealed by the crystal structure of the IL-1 receptor with an antagonist

Abstract

Inflammation, regardless of whether it is provoked by infection or by tissue damage, starts with the activation of macrophages which initiate a cascade of inflammatory responses by producing the cytokines interleukin-1 (IL-1) and tumour necrosis factor-α (ref. 1). Three naturally occurring ligands for the IL-1 receptor (IL1R) exist: the agonists IL-1α and IL-lβ and the IL-1-receptor antagonist IL1RA (ref. 2). IL-1 is the only cytokine for which a naturally occurring antagonist is known. Here we describe the crystal structure at 2.7 Å resolution of the soluble extracellular part of type-I IL1R complexed with IL1RA. The receptor consists of three immunoglobulin-like domains. Domains 1 and 2 are tightly linked, but domain three is completely separate and connected by a flexible linker. Residues of all three domains contact the antagonist and include the five critical IL1RA residues which were identified by site-directed mutagenesis3. A region that is important for biological function in IL-1β, the 'receptor trigger site', is not in direct contact with the receptor in the IL1RA complex. Modelling studies suggest that this IL-1β trigger site might induce a movement of domain 3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baumann, H. & Gauldie, J. The acute phase response. Immunol. Today 15, 74–80 (1994).

    Article  CAS  Google Scholar 

  2. Dinarello, C. A. The interleukin-1 family: 10 years of discovery. FASEB J. 8, 1314–1325 (1994).

    Article  CAS  Google Scholar 

  3. Evans, R. J. et al. Mapping receptor binding sites in interleukin (IL)-l receptor antagonist and IL-1β by site-directed mutagenesis. Identificaiton of a single site in IL-lra and two sites in IL-1β. J. Biol. Chem. 270, 11477–11483 (1995).

    Article  CAS  Google Scholar 

  4. Schreuder, H. A. et al. Crystals of soluble interleukin-1 receptor complexed with its natural antagonist reveal a 1:1 receptor-ligand complex. FEBS Lett. 373, 39–40 (1995).

    Article  CAS  Google Scholar 

  5. Schreuder, H. A. et al. Refined crystal structure of the interleukin-1 receptor antagonist. Presence of a disulfide link and a cis proline. Eur. J. Biochem. 227, 838–847 (1995).

    Article  CAS  Google Scholar 

  6. Sims, J. E. et al. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 241, 585–589 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Harpaz, Y. & Chothia, C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. Mol. Biol. 238, 528–539 (1994).

    Article  CAS  Google Scholar 

  8. Hemmingsen, J. M., Gernert, K. M., Richardson, J. S. & Richardson, D. C. The tyrosine corner: A feature of most greek key β-barrel proteins. Prot. Sci. 3, 1927–1937 (1994).

    Article  CAS  Google Scholar 

  9. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  10. Clackson, T. & Wells, J. A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Yanofksy, S. D. et al. High affinity type I interleukin 1 receptor antagonists discovered by screening recombinant peptide libraries. Proc. Natl Acad. Sci. USA 93, 7381–7386 (1996).

    Article  ADS  Google Scholar 

  12. Banner, D. W. et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: Implications for TNF receptor activation. Cell 73, 431–445 (1993).

    Article  CAS  Google Scholar 

  13. Vos, A. M., Ultsch, M. & Kossiakoff, A. A. Human growth hormone and extracellular domain of its receptor: Crystal structure of the complex. Science 255, 306–312 (1992).

    Article  ADS  Google Scholar 

  14. Walter, M. R. et al. Crystal structure of a complex between interferon-γ and its soluble high-affinity receptor. Nature 376, 230–235 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Livnah, O. et al. Functional mimicry of a protein hormone by a peptide agonist: The EPO receptor complex at 2.8 Å. Science 273, 464–471 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Greenfeder, S. A. et al. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J. Biol. Chem. 270, 13757–13765 (1995).

    Article  CAS  Google Scholar 

  17. Priestle, J. P., Schär, H.-P. & Grütter, M. G. Crystal structure of the cytokine interleukin-1β. EMBOJ. 7, 339–343 (1988).

    Article  CAS  Google Scholar 

  18. Ju, G. et al. Conversion of the interleukin 1 receptor antagonist into an agonist by site-specific mutagenesis. Proc. Natl Acad. Sci. USA 88, 2658–2662 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  20. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  21. Wang, J. et al. Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 348, 411–418 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Collaborative Computational Project Number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  23. Terwilliger, T. C . & Eisenberg, D. Unbiased three-dimensional refinement of heavy-atom parameters by correlation of origin-removed Patterson functions. Acta Crystallogr. A 39, 813–817 (1983).

    Article  Google Scholar 

  24. Otwinowsky, W. Maximum likelihood refinement of heavy atom parameters. In Isomorphous Replacement and Anomalous Scattering Proc. CCP4 Study Weekend, 25-26 January 1991 (compiled by Wolf, W., Evans, P. R. & Lesly, A. G. W.) 80–86 (1991).

    Google Scholar 

  25. Read, R.J. & Schierbeek, A. J. A phased translation function. J. Appl Crystallogr. 13, 490–495 (1988).

    Article  Google Scholar 

  26. Zhang, K. Y. J. SQUASH-combining constraints for macromolecular phase refinement and extension. Acta Crystallogr. D 49, 213–222 (1993).

    Article  CAS  Google Scholar 

  27. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  28. Brünger, A. X-PLOR, version 3.1. A system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut, 1992).

    Google Scholar 

  29. Kraulis, P. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  30. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreuder, H., Tardif, C., Trump-Kallmeyer, S. et al. A new cytokine-receptor binding mode revealed by the crystal structure of the IL-1 receptor with an antagonist. Nature 386, 194–200 (1997). https://doi.org/10.1038/386194a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386194a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing