Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fgf8 is required for outgrowth and patterning of the limbs

Abstract

The expression pattern and activity of fibroblast growth factor-8 (FGF8) in experimental assays indicate that it has important roles in limb development1,2,3, but early embryonic lethality resulting from mutation of Fgf8 in the germ line of mice has prevented direct assessment of these roles4. Here we report that conditional disruption of Fgf8 in the forelimb of developing mice bypasses embryonic lethality and reveals a requirement for Fgf8 in the formation of the stylopod, anterior zeugopod and autopod. Lack of Fgf8 in the apical ectodermal ridge (AER) alters expression of other Fgf genes, Shh and Bmp2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting the Fgf8 locus.
Figure 2: Fgf8 expression and alkaline phosphatase activity in embryos bearing mutant alleles of Fgf8.
Figure 3: Morphology of Fgf8 conditional mutants.
Figure 4: Fgf8 regulates Fgf4 expression in the AER.
Figure 5: Abnormal morphology and outgrowth of Fgf8 conditional mutant forelimb buds results from increased apoptosis and decreased Fgf10 expression.
Figure 6: Shh expression is not maintained in the ZPA of Fgf8 conditional mutants, but asymmetry of Bmp2 expression is preserved.

Similar content being viewed by others

References

  1. Heikinheimo, M., Lawshe, A., Shackelford, G.M., Wilson, D.B. & MacArthur, C.A. Fgf-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs and central nervous system. Mech. Dev. 48, 129–138 (1994).

    Article  CAS  Google Scholar 

  2. Mahmood, R. et al. A role for Fgf-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr. Biol. 5, 797–806 (1995).

    Article  CAS  Google Scholar 

  3. Crossley, H.P., Minowada, G., MacArthur, C.A. & Martin, G.R. Roles for Fgf-8 in the induction, initiation and maintenance of chick limb development. Cell 84, 127–136 (1996).

    Article  CAS  Google Scholar 

  4. Meyers, E.N., Lewandoski, M. & Martin, G.R. An Fgf8 allelic mutant allelic series generated by Cre- and Flp-mediated recombination. Nature Genet. 18, 136–141 (1998).

    Article  CAS  Google Scholar 

  5. Rubin, L. & Saunders, J.W. Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo constancy and temporal limits of the ectodermal induction. Dev. Biol. 28, 94–112 (1972).

    Article  CAS  Google Scholar 

  6. Wolpert, L., Lewis, J. & Summerbell, D. Morphogenesis of the vertebrate limb. Ciba Found. Symp. 29, 95–130 (1975).

    Google Scholar 

  7. Vogel, A., Rodriguez, C. & Izpisua-Belmonte, J.C. Involvement of FGF8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750 (1996).

    CAS  Google Scholar 

  8. Ohuchi, H. et al. Involvement of androgen-induced growth factor (Fgf-8) gene in mouse embryogenesis and morphogenesis. Biochem. Biophys. Res. Commun. 204, 882–888 (1994).

    Article  CAS  Google Scholar 

  9. Cohn, M.J., Izpisúa-Belmonte, J.C., Abud, H., Heath, J.K. & Tickle, C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80, 739–746 (1995).

    Article  CAS  Google Scholar 

  10. Riddle, R.D., Johnson, R.L., Laufer, E. & Tabin, C. Sonic Hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  Google Scholar 

  11. Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G.R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587 (1993).

    Article  CAS  Google Scholar 

  12. Colvin, J.S., Feldman, B., Nadeau, J.H., Goldfarb, M. & Ornitz, D.M. Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev. Dyn. 216, 72–88 (1999).

    Article  CAS  Google Scholar 

  13. Moon, A.M., Boulet, A.M. & Capecchi, M.R. Normal limb development in conditional mutants of Fgf4. Development 127, 989–996 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, X. & Martin, G. Conditional inactivation of Fgf4 reveals complexity of signaling during limb bud development. Nature Genet. 25, 83–86 (2000).

    Article  CAS  Google Scholar 

  15. Thomas, K.T. & Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  16. Dymecki, S.M. Flp recombinase promotes site-specific recombination in embryonic stem cells and transgenic mice. Proc. Natl Acad. Sci. USA 93, 6191–6196 (1996).

    Article  CAS  Google Scholar 

  17. Reynolds, K., Mezey, E. & Zimmer, A. Activity of the B-retinoic acid receptor promoter in transgenic mice. Mech. Dev. 36, 15–29 (1991).

    Article  CAS  Google Scholar 

  18. Mendelsohn, C., Ruberte, E., LeMeur, M., Morriss-Kay, G. & Chambon, P. Developmental analysis of the retinoic acid-inducible RAR-B2 promoter in transgenic animals. Development 113, 723–734 (1991).

    CAS  PubMed  Google Scholar 

  19. Rowe, D.A. & Fallon, J.F. The effect of removing posterior apical ectodermal ridge of the chick wing and leg on pattern formation. J. Embryol. Exp. Morph. 65, 309–325 (1981).

    PubMed  Google Scholar 

  20. Ohuchi, H. et al. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235–2244 (1997).

    CAS  Google Scholar 

  21. Min, H. et al. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 12, 3156–3161 (1998).

    Article  CAS  Google Scholar 

  22. Sekine, K. et al. Fgf10 is essential for limb and lung formation. Nature Genet. 21, 138–141 (1999).

    Article  CAS  Google Scholar 

  23. Xu, X. et al. Fibroblast growth factor receptor 2-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125, 753–765 (1998).

    CAS  Google Scholar 

  24. Laufer, E., Nelson, C.E., Johnson, R.L., Morgan, B.A. & Tabin, C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).

    Article  CAS  Google Scholar 

  25. Niswander, L., Jeffery, S., Martin, G.R. & Tickle, C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–614 (1994).

    Article  CAS  Google Scholar 

  26. Ros, M.A. et al. The limb field mesoderm determines initial limb bud anteroposterior asymmetry and budding independent of sonic hedgehog or apical ectodermal gene expressions. Development 122, 2319–2330 (1996).

    CAS  PubMed  Google Scholar 

  27. Lewandoski, M., Sun, X. & Martin, G.R. Fgf8 signalling from the AER is essential for normal limb development. Nature Genet. 26, 460–463 (2000).

    Article  CAS  Google Scholar 

  28. Tabin, C. A developmental model for thalidomide defects. Nature 396, 322–323 (1998).

    Article  CAS  Google Scholar 

  29. Rogala, E.J., Wynne-Davis, R., Littlejohn, A. & Gormley, J. Congenital limb anomalies: frequency and aetiological factors. J. Med. Genet. 11, 221–233 (1974).

    Article  CAS  Google Scholar 

  30. Tanaka, A. et al. Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc. Natl Acad. Sci. USA 89, 8928–8932 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Tomlin for technical assistance; vivarium staff for their ongoing efforts; members of the Capecchi laboratory for input and critical reading of the manuscript; L. Oswald for assistance with preparing the manuscript; A. McMahon, B. Hogan, C. Deng and D. Ornitz for in situ probes; and J. Deschamps for the RAR β2 promoter fragment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario R. Capecchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, A., Capecchi, M. Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet 26, 455–459 (2000). https://doi.org/10.1038/82601

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82601

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing