Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL

Abstract

The therapeutic and preventive activities of retinoids in cancer are due to their ability to modulate the growth, differentiation, and survival or apoptosis of cancer cells. Here we show that in NB4 acute promyelocytic leukemia cells, retinoids selective for retinoic-acid receptor-α induced an autoregulatory circuitry of survival programs followed by expression of the membrane-bound tumor-selective death ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand, also called Apo-2L). In a paracrine mode of action, TRAIL killed NB4 as well as heterologous and retinoic-acid–resistant cells. In the leukemic blasts of freshly diagnosed acute promyelocytic leukemia patients, retinoic-acid–induced expression of TRAIL most likely caused blast apoptosis. Thus, induction of TRAIL-mediated death signaling appears to contribute to the therapeutic value of retinoids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RAR-α agonists induce survival programs prior to apoptosis in promyelocytic NB4 cells.
Figure 2: In NB4 cells, ATRA activates a paracrine death program that induces apoptosis in breast-cancer and ATRA-resistant cells.
Figure 3: ATRA-induced expression of TRAIL in NB4 and PLB985 cells a, RPA to monitor the effect of ATRA on the expression of death receptors and death ligands.
Figure 4: ATRA-induced TRAIL expression in NB4 cells is the cause of apoptosis.
Figure 5: ATRA induces TRAIL expression in the blasts of APL patients and synergizes with exogenous TRAIL for induction of apoptosis.
Figure 6: Survival and death programs induced by ATRA through the PML–RAR-α oncoprotein in promyelocytic NB4 cells.

Similar content being viewed by others

References

  1. Sporn, M.B., Roberts, A.B. & Goodman, D.S. The Retinoids: Biology, Chemistry and Medicine. (Raven, New York, 1994).

    Google Scholar 

  2. Kastner, P., Mark, M. & Chambon, P. Nonsteroid nuclear receptors: What are genetic studies telling us about their role in real life? Cell 83, 859–869 (1995).

    Article  CAS  Google Scholar 

  3. Verma, A.K. Inhibition of both stage I and stage II mouse skin tumour promotion by retinoic acid and the dependence of inhibition of tumor promotion on the duration of retinoic acid treatment. Cancer Res. 47, 5097–5101 (1987).

    CAS  PubMed  Google Scholar 

  4. Lippman, S.M. et al. 13-cis-retinoic acid plus interferon α-2a: highly active systemic therapy for squamous cell carcinoma of the cervix. J. Natl. Cancer Inst. 84, 241–245 (1992).

    Article  CAS  Google Scholar 

  5. Lippman, S.M. et al. 13-cis-retinoic acid and interferon α-2a: effective combination therapy for advanced squamous cell carcinoma of the skin. J. Natl. Cancer Inst. 84, 235–241 (1992).

    Article  CAS  Google Scholar 

  6. Bonhomme, L. et al. Topical treatment of epidemic Kaposi's sarcoma with all-trans-retinoic acid. Ann. Oncol. 2, 234–235 (1991).

    Article  CAS  Google Scholar 

  7. Fenaux, P. & Degos, L. Differentiation therapy for acute promyelocytic leukemia. N. Engl. J. Med. 337, 1076–1077 (1997).

    Article  CAS  Google Scholar 

  8. Slack, J.L. & Gallagher, R.E. The molecular biology of acute promyelocytic leukemia. Cancer Treat. Res. 99, 75–124 (1999).

    Article  CAS  Google Scholar 

  9. Minucci, S. & Pelicci, P.G. Retinoid receptors in health and disease: co-regulators and the chromatin connection. Semin. Cell. Dev. Biol. 10, 215–225 (1999).

    Article  CAS  Google Scholar 

  10. Lotan, R. Retinoids in cancer chemoprevention. FASEB J. 10, 1031–1039 (1996).

    Article  CAS  Google Scholar 

  11. Hong, W.K. & Sporn, M.B. Recent advances in chemoprevention of cancer. Science 278, 1073–1077 (1997).

    Article  CAS  Google Scholar 

  12. International Agency for Research on Cancer. IARC Handbooks of Cancer Prevention Vol. 4: Retinoids. (IARC, Lyon, France, 1999).

  13. Lanotte, M. et al. NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 77, 1080–1086 (1991).

    CAS  PubMed  Google Scholar 

  14. Chen, J.Y. et al. Two distinct actions of retinoid-receptor ligands. Nature 382, 819–822 (1996).

    Article  CAS  Google Scholar 

  15. Gehin, M. et al. Structural basis for engineering of retinoic acid receptor isotype- selective agonists and antagonists. Chem. Biol. 6, 519–529 (1999).

    Article  CAS  Google Scholar 

  16. Benoit, G. et al. RAR-independent RXR signaling induces t(15;17) leukemia cell maturation. EMBO J. 18, 7011–7018 (1999).

    Article  CAS  Google Scholar 

  17. Moreb, J.S. & Schweder, M. Human A1, a Bcl-2-related gene, is induced in leukemic cells by cytokines as well as differentiating factors. Leukemia 11, 998–1004 (1997).

    Article  CAS  Google Scholar 

  18. Bruel, A., Benoit, G., De Nay, D., Brown, S. & Lanotte, M. Distinct apoptotic responses in maturation sensitive and resistant t(15;17) acute promyelocytic leukemia NB4 cells. 9-cis retinoic acid induces apoptosis independent of maturation and Bcl-2 expression. Leukemia 9, 1173–1184 (1995).

    CAS  PubMed  Google Scholar 

  19. Deveraux, Q.L. & Reed, J.C. IAP family proteins—suppressors of apoptosis. Genes Dev. 13, 239–52 (1999).

    Article  CAS  Google Scholar 

  20. Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V. & Baldwin, A.S. Jr . NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

    Article  CAS  Google Scholar 

  21. Schneider, P. et al. Conversion of membrane-bound Fas (CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Med. 187, 1205–1213 (1998).

    Article  CAS  Google Scholar 

  22. Ashkenazi, A. & Dixit, V.M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell. Biol. 11, 255–260 (1999).

    Article  CAS  Google Scholar 

  23. Walczak, H. & Krammer, P.H. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp. Cell. Res. 256, 58–66 (2000).

    Article  CAS  Google Scholar 

  24. Tucker, K.A., Lilly, M.B., Heck, L. & Rado, T.A. Characterization of a new human diploid myeloid leukemia cell line (PLB-985) with granulocytic and monocytic differentiating capacity. Blood 70, 372–378 (1987).

    CAS  PubMed  Google Scholar 

  25. Bodmer, J.L. et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nature Cell Biol. 2, 241–243 (2000).

    Article  CAS  Google Scholar 

  26. Kischkel, F.C. et al. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611–620 (2000).

    Article  CAS  Google Scholar 

  27. Sprick, M.R. et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599–609 (2000).

    Article  CAS  Google Scholar 

  28. Wang, J. et al. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98, 47–58 (1999).

    Article  CAS  Google Scholar 

  29. Pan, G. et al. The receptor for the cytotoxic ligand TRAIL. Science 276, 111–113 (1997).

    Article  CAS  Google Scholar 

  30. Nagy, L. et al. Activation of retinoid X receptors induces apoptosis in HL-60 cell lines. Mol. Cell. Biol. 15, 3540–3551 (1995).

    Article  CAS  Google Scholar 

  31. Wen, J. et al. Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L- induced apoptosis of human acute leukemia cells. Blood 96, 3900–3906 (2000).

    CAS  PubMed  Google Scholar 

  32. Sun, S.Y., Yue, P., Hong, W.K. & Lotan, R. Augmentation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by the synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) through up-regulation of TRAIL receptors in human lung cancer cells. Cancer Res. 60, 7149–7155 (2000).

    CAS  PubMed  Google Scholar 

  33. Raff, M.C. et al. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695–700 (1993).

    Article  CAS  Google Scholar 

  34. Zong, W.X., Edelstein, L.C., Chen, C., Bash, J. & Gelinas, C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNF-α–induced apoptosis. Genes Dev. 13, 382–387 (1999).

    Article  CAS  Google Scholar 

  35. Grumont, R.J., Rourke, I.J. & Gerondakis, S. Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev8 13, 400–411 (1999).

    Article  CAS  Google Scholar 

  36. Chu, Z.L. et al. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control. Proc. Natl. Acad. Sci. USA 94, 10057–10062 (1997).

    Article  CAS  Google Scholar 

  37. You, M., Ku, P.T., Hrdlickova, R. & Bose, H.R., Jr . ch-IAP1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein. Mol. Cell. Biol. 17, 7328–7341 (1997).

    Article  CAS  Google Scholar 

  38. Pomerantz, J.L. & Baltimore, D. Signal transduction. A cellular rescue team. Nature 406, 26–27 (2000).

    Article  CAS  Google Scholar 

  39. Gianni, M. et al. Retinoid-dependent growth inhibition, differentiation and apoptosis in acute promyelocytic leukemia cells. Expression and activation of caspases. Cell Death Differ. 7, 447–460 (2000).

    Article  CAS  Google Scholar 

  40. Sun, S.Y. et al. Dual mechanisms of action of the retinoid CD437: nuclear retinoic acid receptor-mediated suppression of squamous differentiation and receptor- independent induction of apoptosis in UMSCC22B human head and neck squamous cell carcinoma cells. Mol. Pharmacol. 58, 508–514 (2000).

    Article  CAS  Google Scholar 

  41. Walczak, H. et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Med. 5, 157–163 (1999).

    Article  CAS  Google Scholar 

  42. Ashkenazi, A. et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999).

    Article  CAS  Google Scholar 

  43. Zamai, L. et al. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis. Blood 95, 3716–3724 (2000).

    CAS  PubMed  Google Scholar 

  44. Chomienne, C. et al. All-trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies: structure-function relationship. Blood 76, 1710–1717 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Lieb and E. Wilhelm for cell culture and FACS analysis; C. Erb and A. Pornon for cloning and analysis of the BCL2A1 promoter; N. Balitrand for handling of the patient samples F-1 and F-2; J.-Y. Chen on advice in using the RPA system; A.M. Molinari for providing the ATRA-treated blasts of patient I-1; M. Lanotte and G. Benoit for the NB4 and NB4-R2 cell lines; Y.E. Cayre for PLB985 cells; Genentech/Immunex for TRAIL cDNA; and Bristol-Myers Squibb for synthetic retinoids. This work was supported by funds from the Human Fronteir Science (A. Reitmair) and the Marie Curie (W.R.) programs, the ministere pour la Recherche et Technologie (A. Rossin), the Institut National de la Santé et de la Recherche Médicale, the Centre National de la Recherche Scientifique (L.A.), the Hôpital Universitaire de Strasbourg and Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hinrich Gronemeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altucci, L., Rossin, A., Raffelsberger, W. et al. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 7, 680–686 (2001). https://doi.org/10.1038/89050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing