Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction between ubiquitin–protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation

Abstract

The transcription factor E2F-1 is important in the control of cell proliferation. Its activity must be tightly regulated in a cell-cycle-dependent manner to enable programs of gene expression to be coupled closely with cell-cycle position. Here we show that, following its accumulation in the late G1 phase of the cell cycle, E2F-1 is rapidly degraded in S/G2 phase. This event is linked to a specific interaction of E2F-1 with the F-box-containing protein p45SKP2, which is the cell-cycle-regulated component of the ubiquitin–protein ligase SCFSKP2 that recognizes substrates for this ligase. Disruption of the interaction between E2F-1 and p45SKP2 results in a reduction in ubiquitination of E2F-1 and the stabilization and accumulation of transcriptionally active E2F-1 protein. These results indicate that an SCFSKP2-dependent ubiquitination pathway may be involved in the downregulation of E2F-1 activity in the S/G2 phase of the cell cycle, and suggest a link between SCFSKP2 and cell-cycle-dependent gene control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p45 SKP2 associates with a ubiquitination-promoting activity in vitro.
Figure 2: Cell-cycle regulation of E2F-1 protein accumulation and proteasome-dependent degradation of E2F-1 in S/G2 phase.
Figure 3: Formation of p45 SKP2 , CUL-1 and E2F-1 complexes in vivo.
Figure 4: Identification of a segment of E2F-1 that is sufficient for its binding to p45 SKP2 and CUL-1 in vitro.
Figure 5: The p45 SKP2 -binding domain of E2F-1 is required for efficient ubiquitination of E2F-1 and its presence correlates with instability in vivo.
Figure 6: Effects of uncoupling E2F-1 from SCF SKP2 -dependent ubiquitination on the DNA-binding function and S-phase-promoting activity of E2F-1 in retrovirally infected NIH3T3 cells.

Similar content being viewed by others

References

  1. King, R. W., Deshaies, R. J., Peters, J. & Kirschner, M. W. How proteolysis drives the cell cycle. Science 274, 1652–1659 (1996).

    Article  CAS  Google Scholar 

  2. Wang, Z. M., Yang, H. & Livingston, D. M. Endogenous E2F-1 promotes timely G0 exit of resting mouse embryo fibroblasts. Proc. Natl Acad. Sci. USA 95, 15583–15586 (1998).

    Article  CAS  Google Scholar 

  3. Leone, G. et al. E2F-3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 12, 2120–2130 (1998).

    Article  CAS  Google Scholar 

  4. Campanero, M. R. & Flemington, E. K. Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc. Natl Acad. Sci. USA 94, 2221–2226 (1997).

    Article  CAS  Google Scholar 

  5. Hofmann, F., Martelli, F., Livingston, D. M. & Wang, Z. The retinoblastoma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway. Genes Dev. 10, 2949– 2959 (1996).

    Article  CAS  Google Scholar 

  6. Hateboer, G., Kerkhoven, R. M., Shvarts, A., Bernards, R. & Beijersbergen, R. L. Degradation of E2F by the ubiquitin-proteasome pathway: regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev. 10 , 2960–2970 (1996).

    Article  CAS  Google Scholar 

  7. Johnson, D. G., Ohtani, K. & Nevins, J. R. Oncogenic capacity of the E2F-1 gene. Proc. Natl Acad. Sci. USA 91, 12823–12827 ( 1994).

    Article  CAS  Google Scholar 

  8. Singh, P., Wong, S. & Hong, W. Overexpression of E2F-1 in rat embryo fibroblasts leads to neoplastic transformation . EMBO J. 13, 3329–3338 (1994).

    Article  CAS  Google Scholar 

  9. Xu, G., Livingston, D. M. & Krek, W. Multiple members of the E2F transcription factor family are the products of oncogenes. Proc. Natl Acad. Sci. USA 92, 1357–1361 (1995).

    Article  CAS  Google Scholar 

  10. Johnson, D. G., Schwarz, J. K., Cress, W. D. & Nevins, J. R. Expression of transcription factor E2F-1 induced quiescent cells to enter S phase. Nature 365, 349– 352 (1993).

    Article  CAS  Google Scholar 

  11. Kowalik, T. F., DeGregori, J., Schwarz, J. K. & Nevins, J. R. E2F-1 overexpression in quiescent fibroblasts leads to induction of DNA synthesis and apoptosis. J. Virol. 69, 2491–2500 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Qin, X.-Q., Livingston, D. M., Kaelin, W. G. & Adams, P. Deregulated transcription factor E2F-1 expression leads to S phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91 , 10918–10922 (1994).

    Article  CAS  Google Scholar 

  13. Shan, B. & Lee, W.-H. Deregulated expression of E2F-1 induces S phase entry and leads to apoptosis. Mol. Cell. Biol. 14, 8166–8173 (1994).

    Article  CAS  Google Scholar 

  14. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  CAS  Google Scholar 

  15. Yamasaki, L. et al. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–548 ( 1996).

    Article  CAS  Google Scholar 

  16. Field, J. S. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549– 561 (1996).

    CAS  Google Scholar 

  17. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  Google Scholar 

  18. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86 , 263–274 (1996).

    Article  CAS  Google Scholar 

  19. Feldman, R. M., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997).

    Article  CAS  Google Scholar 

  20. Patton, E. E. et al. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev. 12, 692– 705 (1998).

    Article  CAS  Google Scholar 

  21. Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).

    Article  CAS  Google Scholar 

  22. Elledge, S. J. & Harper, J. W. The role of proteolysis in the cell cycle and cancer. Biochim. Biophys. Acta 17, 61–70 (1998 ).

    Google Scholar 

  23. Patton, E. E., Willems, A. R. & Tyers, M. Combinatorial control in ubiquitin-dependent proteolysis: Don't Skip the F-box hypothesis. Trends Genet. 14, 236– 243 (1998).

    Article  CAS  Google Scholar 

  24. Krek, W. Proteolysis and the G1-S transition: the SCF connection. Curr. Opin. Genet. Dev. 8, 36–42 (1998).

    Article  Google Scholar 

  25. Mathias, N. et al. Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins. Mol. Cell. Biol. 16, 6634–6643 (1996).

    Article  CAS  Google Scholar 

  26. Willems, A. R. et al. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86, 453–463 (1996).

    Article  CAS  Google Scholar 

  27. Zhang, H., Kobayashi, R., Galaktionov, K. & Beach, D. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase . Cell 82, 915–925 (1995).

    Article  CAS  Google Scholar 

  28. Lisztwan, J. et al. Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45SKP2: evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J. 17, 368–383 (1998).

    Article  CAS  Google Scholar 

  29. Lyapina, S. A., Correll, C. C., Kipreos, E. T. & Deshaies, R. J. Human CUL1 forms an evolutionarily conserved ubiquitin ligase complex (SCF) with SKP1 and an F-box protein. Proc. Natl Acad. Sci. USA 95, 7451–7456 (1998).

    Article  CAS  Google Scholar 

  30. Yu, Z. K., Gervais, J. L. M. & Zhang, H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc. Natl Acad. Sci. USA 95, 11324–11329 (1998).

    Article  CAS  Google Scholar 

  31. Michel, J. J. & Xiong, Y. Human Cul-1, but not other cullin family members selectively interacts with SKP1 to from a complex with SKP2 and cyclin A. Cell Growth Differ. 9, 435 –449 (1998).

    CAS  PubMed  Google Scholar 

  32. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  Google Scholar 

  33. Krek, W. et al. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 78, 161–172 ( 1994).

    Article  CAS  Google Scholar 

  34. Dynlacht, B. D., Flores, O., Lees, J. A. & Harlow, E. Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes Dev. 8, 1772–1786 (1994).

    Article  CAS  Google Scholar 

  35. Xu, M., Sheppard, K. A., Peng, C. Y., Yee, A. S. & Piwnica-Worms, H. Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation . Mol. Cell. Biol. 14, 8420– 8431 (1994).

    Article  CAS  Google Scholar 

  36. Zindy, F. et al. Cyclin A is required in S phase in normal epithelial cells. Biochem. Biophys. Res. Commun. 182, 1144– 1154 (1992).

    Article  CAS  Google Scholar 

  37. Pagano, M., Pepperkok, R., Verde, F., Ansorge, W. & Draetta, G. Cyclin A is required at two points in the human cell cycle. EMBO J. 11, 961– 971 (1992).

    Article  CAS  Google Scholar 

  38. Girard, F., Strausfeld, U., Fernandez, A. & Lamb, N. J. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts . Cell 67, 1169–1179 (1991).

    Article  CAS  Google Scholar 

  39. Krek, W., Xu, G. & Livingston, D. M. Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 83, 1149–1158 (1995).

    Article  CAS  Google Scholar 

  40. van den Heuval, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054 (1993).

    Article  Google Scholar 

  41. Treier, M., Staszewski, L. M. & Bohmann, D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain. Cell 78, 787–798 (1994).

    Article  CAS  Google Scholar 

  42. Morgenstern, J. P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug resistance markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  Google Scholar 

  43. Krek, W., Livingston, D. M. & Shirodkar, S. Binding to DNA and the retinoblastoma gene product promoted by complex formation of different E2F family members. Science 262, 1557–1560 (1993).

    Article  CAS  Google Scholar 

  44. Banerjee, A., Gregori, L., Xu, Y. & Chau, V. The bacterially expressed yeast CDC34 gene product can undergo autoubiquitination to form a multiubiquitin chain-linked protein. J. Biol. Chem. 268, 5668–5675 (1993).

    CAS  PubMed  Google Scholar 

  45. Scheffner, M., Nuber, U. & Huibregtse, J. M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratory for many helpful discussions; H. Angliker for sequencing and P. Müller for synthesis of oligonucleotides; D. Beach for p45SKP2 and p19SKP1 cDNAs and for the GST–p45SKP2 baculovirus; A. Pause and R. Klausner for HA-tagged CUL-1 plasmid; D. Bohmann for the HA–ubiquitin plasmid; E. Harlow for pCMV–CDC2; and B. Amati, R. Eckner, P. Caroni, N. Hynes, P. Matthias and members of our laboratory for careful reading of the manuscript. W. K. is a START fellow and is supported by the Swiss National Science Foundation.

Correspondence and requests for materials should be addressed to W. K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Krek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marti, A., Wirbelauer, C., Scheffner, M. et al. Interaction between ubiquitin–protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1, 14–19 (1999). https://doi.org/10.1038/8984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing