Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc–dependent pathway

Abstract

T lymphocytes circulate in a quiescent state until they encounter cognate antigen bound to the surface of an antigen-presenting cell. The molecular pathways that regulate T cell quiescence remain largely unknown. Here we show that forced expression of the lung Krüppel-like transcription factor (LKLF) in Jurkat T cells is sufficient to program a quiescent phenotype characterized by decreased proliferation, reduced cell size and protein synthesis and decreased surface expression of activation markers. Conversely, LKLF-deficient peripheral T cells produced by gene targeting showed increased proliferation, increased cell size and enhanced expression of surface activation markers in vivo. LKLF appeared to function, at least in part, by decreasing expression of the proto-oncogene encoding c-Myc. Forced expression of LKLF was associated with markedly decreased c-Myc expression. In addition, many effects of LKLF expression were mimicked by expression of the dominant-negative MadMyc protein and rescued by overexpression of c-Myc. Thus, LKLF is both necessary and sufficient to program quiescence in T cells and functions, in part, by negatively regulating a c-Myc–dependent pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of LKLF in Jurkat cells with the use of a tetracycline-inducible system.
Figure 2: LKLF inhibits T cell proliferation.
Figure 3: The inhibitory effects of LKLF on T cell proliferation are reversible and are not due to the induction of apoptosis
Figure 4: Effects of LKLF expression on Jurkat cell cycle progression.
Figure 5: Effects of LKLF expression on T cell macromolecular synthesis, cell size and surface phenotype.
Figure 6: LKLF decreases c-Myc mRNA and protein expression in Jurkat cells.
Figure 7: LKLF functions via a c-Myc–dependent pathway in Jurkat cells.
Figure 8: Effects of LKLF, MadMyc and c-Myc expression on quiescence in CCRF-CEM cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Abbas, A. K., Lichtman, A. H. & Pober, J. S. Cellular and Molecular Immunology, 2nd edn (W.B. Saunders, London, 1994).

    Google Scholar 

  2. Freitas, A. A. & Rocha, B. Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol . 18, 83–111 (2000).

    Article  CAS  Google Scholar 

  3. Perkins, A. Erythroid Krüppel-like factor: from fishing expedition to gourmet meal. Int. J. Biochem. Cell Biol. 31, 1175–1192 (1999).

    Article  CAS  Google Scholar 

  4. Segre, J., Bauer C. & Fuchs, E. Klf4 is a transcription factor required for establishing the barrier function of skin. Nature Genet. 22, 356–360 (1999).

    Article  CAS  Google Scholar 

  5. Kuo, C. T. et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 11, 2996–3006 (1997).

    Article  CAS  Google Scholar 

  6. Coghill, E. et al. Erythroid Krüppel-like factor (EKLF) coordinates erythroid cell proliferation and hemoglobinization in cell lines derived from EKLF null mice. Blood 97, 1861–1868 (2001).

    Article  CAS  Google Scholar 

  7. Shields, J. M., Christy, R. J. & Yang, V. W. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J. Biol. Chem. 271, 20009–20017 (1996).

    Article  CAS  Google Scholar 

  8. Kuo, C. T., Veselits, M. L. & Leiden J. M. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).

    Article  CAS  Google Scholar 

  9. Schober, S. L. et al. Expression of the transcription factor Lung Krüppel-Like Factor is regulated by cytokines and correlates with survival of memory T cells in vitro and in vivo. J. Immunol. 163, 3662–3667 (1999).

    CAS  PubMed  Google Scholar 

  10. Sprent, J. & Surh, C. D. Generation and maintenance of memory T cells. Curr. Opin. Immunol. 13, 248–254 (2001).

    Article  CAS  Google Scholar 

  11. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  Google Scholar 

  12. Berns, K., Hijmans, E. M. & Bernards, R. Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclinE/CDK2 kinase activity. Oncogene 15, 1347–1356 (1997).

    Article  CAS  Google Scholar 

  13. Cazzola, M., Bergamaschi, G., Dezza, L. & Arosio, P. Manipulations of cellular iron metabolism for modulating normal and malignant cell proliferation: Achievements and prospects. Blood 75, 1903–1908 (1990).

    CAS  PubMed  Google Scholar 

  14. Ellis, T. M., Simms, P. E., Slivnick, D. J., Jäck, H.-M. & Fisher, R. I. CD30 is a signal-transducing molecule that defines a subset of human activated CD45RO T cells. J. Immunol . 151, 2380–2389 (1993).

    CAS  PubMed  Google Scholar 

  15. Aizawa, S. et al. Tumor necrosis factor receptor-associated factor (TRAF) 5 and TRAF 2 are involved in CD30-mediated NFκB activation. J. Biol. Chem. 272, 2042–2045 (1997).

    Article  CAS  Google Scholar 

  16. Gilfillan, M. C., Noel, P. J., Podack, E. R., Reiner, S. L. & Thompson, C. B. Expression of the costimulatory receptor CD30 is regulated by both CD28 and cytokines. J. Immunol. 160, 2180–2187 (1998).

  17. Gregory, S. et al. Role of the CD1a molecule in the superantigen-induced activation of MHC class II negative human thymocytes. Hum. Immunol. 61, 427–437 (2000).

    Article  CAS  Google Scholar 

  18. Mateyak, M. K., Obaya, A. J. & Sedivy, J. M. c-Myc regulates cyclin D-CDK4 and -CDK6 activity but affects cell cycle progression at multiple independent points. Mol. Cell. Biol. 19, 4672–4683 (1999).

    Article  CAS  Google Scholar 

  19. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    Article  CAS  Google Scholar 

  20. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    Article  CAS  Google Scholar 

  21. Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ . 8, 1039–1048 (1997).

    CAS  PubMed  Google Scholar 

  22. Wu, K.-J., Polack, A. & Dalla-Favera, R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-Myc. Science 283, 676–679 (1999).

    Article  CAS  Google Scholar 

  23. Brunner, T. et al. Expression of Fas ligand in activated T cells is regulated by c-Myc. J. Biol. Chem. 275, 9767–9772 (2000).

    Article  CAS  Google Scholar 

  24. Spencer, C. A., LeStrange, R. C., Novak, U., Hayward, W. S. & Groudine, M. The block to transcriptional elongation is promoter dependent in normal and Burkitt's lymphoma c-myc alleles. Genes Dev. 4, 75–88 (1990).

    Article  CAS  Google Scholar 

  25. Sussman, D. J., Chung, J. & Leder, P. In vitro and in vivo analysis of the c-myc RNA polymerase III promoter. Nucleic Acids Res. 19, 5045–5052 (1991).

    Article  CAS  Google Scholar 

  26. Krumm, A., Meulia, T., Brunvand, M. & Groudine, M. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev. 6, 2201–2213 (1992).

    Article  CAS  Google Scholar 

  27. Ryan, K. M. & Birnie, G. D. Myc oncogenes: the enigmatic family. Biochem. J. 314, 713–721 (1996).

    Article  CAS  Google Scholar 

  28. Tripathy, S. K., Goldwasser, E., Lu, M., Barr, E. & Leiden, J. M. Stable delivery of physiologic levels of recombinant erythropoietin to the systemic circulation by intramuscular injection of replication-defective adenovirus. Proc. Natl Acad. Sci. USA 91, 11557–11561 (1994).

    Article  CAS  Google Scholar 

  29. Carayon, P. & Bord, A. Identification of DNA-replicating lymphocyte subsets using a new method to label the bromo-deoxyuridine incorporated into the DNA. J. Immunol Meth. 147, 225–230 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Vander Heiden and C. Thompson for ATP measurements and helpful discussions; K. Sigrist, R. Wei, Y. Lin for technical assistance; J. Auger, A. Lin, I. Ho for technical advice; R. Bernards for pCMVMadMyc; R. Eisenman for pSP271myc; H. Bujard for Tet-inducible plasmids; G. Nolan for pRVNL3; A. Krumm for ΔP1CAT; D. Marshall for pGEMAdEF1; C. Ting for the use of data before publication; J. Bluestone, A. Ma, M. Peter, D. Strauss and J. Quintans for helpful discussions; E. Kaji, J. Lepore, G. Huggins and G. Reed for critical reading of the manuscript. Supported by a grant from N.I.H. (to J. M. L.) and by NIGMS (A. F. B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Leiden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, A., Kuo, C. & Leiden, J. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc–dependent pathway. Nat Immunol 2, 698–704 (2001). https://doi.org/10.1038/90633

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing