Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Infections

Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT

Abstract

Acute GvHD (aGvHD) is the main complication of hematopoietic SCT (HSCT) during the treatment of hematological disorders. We carried out the first longitudinal study to follow the gut microbiota trajectory, from both the phylogenetic and functional points of view, in pediatric patients undergoing HSCT. Gut microbiota trajectories and short-chain fatty acid production profiles were followed starting from before HSCT and through the 3–4 months after transplant in children developing and not developing aGvHD. According to our findings, HSCT procedures temporarily cause a structural and functional disruption of the gut microbial ecosystem, describing a trajectory of recovery during the following 100 days. The onset of aGvHD is associated with specific gut microbiota signatures both along the course of gut microbiota reconstruction immediately after transplant and, most interestingly, prior to HSCT. Indeed, in pre-HSCT samples, non-aGvHD patients showed higher abundances of propionate-producing Bacteroidetes, highly adaptable microbiome mutualists that showed to persist during the HSCT-induced ecosystem disruption. Our data indicate that structure and temporal dynamics of the gut microbial ecosystem can be a relevant factor for the success of HSCT and opens the perspective to the manipulation of the pre-HSCT gut microbiota configuration to favor mutualistic persisters with immunomodulatory properties in the gut.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI . The human microbiome project. Nature 2007; 449: 804–810.

    Article  CAS  Google Scholar 

  2. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101: 15718–15723.

    Article  Google Scholar 

  3. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007; 2: 204.

    Article  CAS  Google Scholar 

  4. Lee YK, Mazmanian SK . Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 2010; 330: 1768–1773.

    Article  CAS  Google Scholar 

  5. Candela M, Turroni S, Biagi E, Carbonero F, Rampelli S, Fiorentini C et al. Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J Gastroenterol 2014; 20: 908–922.

    Article  Google Scholar 

  6. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W et al. Host-gut microbiota metabolic interactions. Science 2012; 336: 1262–1267.

    Article  CAS  Google Scholar 

  7. Segain JP, Raingeard de la Blétière D, Bourreille A, Leray V, Gervois N, Rosales C et al. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn's disease. Gut 2000; 47: 397–403.

    Article  CAS  Google Scholar 

  8. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504: 451–455.

    Article  CAS  Google Scholar 

  9. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011; 469: 543–547.

    Article  CAS  Google Scholar 

  10. Petersson J, Schreiber O, Hansson GC, Gendler SJ, Velcich A, Lundberg JO et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 2011; 300: G327–G333.

    Article  CAS  Google Scholar 

  11. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59–65.

    Article  CAS  Google Scholar 

  12. Candela M, Biagi E, Turroni S, Maccaferri S, Figini P, Brigidi P . Dynamic efficiency of the human intestinal microbiota. Crit Rev Microbiol 2013; 9: 1–7.

    Google Scholar 

  13. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL et al. The long term stability of the human gut microbiota. Science 2013; 341: 1237439.

    Article  Google Scholar 

  14. Candela M, Biagi E, Maccaferri S, Turroni S, Brigidi P . Intestinal microbiota is a plastic factor responding to environmental changes. Trends Microbiol 2012; 20: 385–391.

    Article  CAS  Google Scholar 

  15. Neish AS . Microbes in gastrointestinal health and disease. Gastroenterology 2009; 136: 65–80.

    Article  Google Scholar 

  16. Tilg H, Moschen AR . Mechanisms behind the link between obesity and gastrointestinal cancers. Best Pract Res Clin Gastroenterol 2014; 28: 599–610.

    Article  CAS  Google Scholar 

  17. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014; 20: 159–166.

    Article  CAS  Google Scholar 

  18. Ferrara JL, Levine JE, Reddy P, Holler E . Graft-versus-host disease. Lancet 2009; 373: 1550–1561.

    Article  CAS  Google Scholar 

  19. Pasquini MC, Wang Z, Horowitz MM, Gale RP . 2010 report from the Center for International Blood and Marrow Transplant Research (CIBMTR): current uses and outcomes of haematopoietic cell transplants for blood and bone marrow disorders. Clin Transpl 2010, 87–105.

  20. Blazar BR, Murphy WJ, Abedi M . Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol 2012; 12: 443–458.

    Article  CAS  Google Scholar 

  21. van Bekkum DW, Roodenburg J, Heidt PJ, van der Waaij D . Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora. J Natl Cancer Inst 1974; 52: 401–404.

    Article  CAS  Google Scholar 

  22. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med 2012; 209: 903–911.

    Article  CAS  Google Scholar 

  23. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant 2014; 20: 640–645.

    Article  Google Scholar 

  24. Heimesaat MM, Nogai A, Bereswill S, Plickert R, Fischer A, Loddenkemper C et al. MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut 2010; 59: 1079–1087.

    Article  CAS  Google Scholar 

  25. Eriguchi Y, Takashima S, Oka H, Shimoji S, Nakamura K, Uryu H et al. Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of α-defensins. Blood 2012; 120: 223–231.

    Article  CAS  Google Scholar 

  26. Tawara I, Liu C, Tamaki H, Toubai T, Sun Y, Evers R et al. Influence of donor microbiota on the severity of experimental graft-versus-host-disease. Biol Blood Marrow Transplant 2013; 19: 164–168.

    Article  Google Scholar 

  27. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 2014; 124: 1174–1182.

    Article  CAS  Google Scholar 

  28. Bucaneve G, Micozzi A, Menichetti F, Martino P, Dionisi MS, Martinelli G et al. Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N Engl J Med 2005; 353: 977–987.

    Article  CAS  Google Scholar 

  29. Saral R, Burns WH, Laskin OL, Santos GW, Lietman PS . Acyclovir prophylaxis of herpes-simplex-virus infections. N Engl J Med 1981; 305: 63–67.

    Article  CAS  Google Scholar 

  30. Goodman JL, Winston DJ, Greenfield RA, Chandrasekar PH, Fox B, Kaizer H et al. A controlled trial of fluconazole to prevent fungal infections in patients undergoing bone marrow transplantation. N Engl J Med 1992; 326: 845–851.

    Article  CAS  Google Scholar 

  31. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A- matched sibling donors. Transplantation 1974; 18: 295–304.

    Article  CAS  Google Scholar 

  32. Salonen A, Nikkilä J, Jalanka-Tuovinen J, Immonen O, Rajilić-Stojanović M, Kekkonen RA et al. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods 2010; 81: 127–134.

    Article  CAS  Google Scholar 

  33. Centanni M, Turroni S, Consolandi C, Rampelli S, Peano C, Severgnini M et al. The enterocyte-associated intestinal microbiota of breast-fed infants and adults responds differently to a TNF-α-mediated pro-inflammatory stimulus. PLoS ONE 2013; 8: e81762.

    Article  Google Scholar 

  34. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 2014; 5: 3654.

    Article  CAS  Google Scholar 

  35. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 2013; 339: 548–554.

    Article  CAS  Google Scholar 

  36. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al. Diversity of the human intestinal microbial flora. Science 2005; 308: 1635–1638.

    Article  Google Scholar 

  37. Dethlefsen L, Huse S, Sogin ML, Relman DA . The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008; 6: e280.

    Article  Google Scholar 

  38. Tremaroli V, Bäckhed F . Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489: 242–249.

    Article  CAS  Google Scholar 

  39. Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK . Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 2013; 501: 426–429.

    Article  CAS  Google Scholar 

  40. Fishbach MA, Sonnenburg JL . Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 2011; 10: 336–347.

    Article  Google Scholar 

  41. Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ, Remely M et al. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting. PLoS ONE 2011; 6: e28654.

    Article  CAS  Google Scholar 

  42. Dignan FL, Potter MN, Ethell ME, Taylor M, Lewis L, Brennan J et al. High readmission rates are associated with a significant economic burden and poor outcome in patients with grade III/IV acute GvHD. Clin Transplant 2013; 27: E56–E63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Candela.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biagi, E., Zama, D., Nastasi, C. et al. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transplant 50, 992–998 (2015). https://doi.org/10.1038/bmt.2015.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2015.16

This article is cited by

Search

Quick links