Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced combined tumor-specific oncolysis and suicide gene therapy for prostate cancer using M6 promoter

Abstract

Enzyme pro-drug suicide gene therapy has been hindered by inefficient viral delivery and gene transduction. To further explore the potential of this approach, we have developed AdIU1, a prostate-restricted replicative adenovirus (PRRA) armed with the herpes simplex virus thymidine kinase (HSV-TK). In our previous Ad-OC-TK/ACV phase I clinical trial, we demonstrated safety and proof of principle with a tissue-specific promoter-based TK/pro-drug therapy using a replication-defective adenovirus for the treatment of prostate cancer metastases. In this study, we aimed to inhibit the growth of androgen-independent (AI), PSA/PSMA-positive prostate cancer cells by AdIU1. In vitro the viability of an AI- PSA/PSMA-expressing prostate cancer cell line, CWR22rv, was significantly inhibited by treatment with AdIU1 plus GCV (10 μg ml−1), compared with AdIU1 treatment alone and also cytotoxicity was observed following treatment with AdIU1 plus GCV only in PSA/PSMA-positive CWR22rv and C4-2 cells, but not in the PSA/PSMA-negative cell line, DU-145. In vivo assessment of AdIU1 plus GCV treatment revealed a stronger therapeutic effect against CWR22rv tumors in nude mice than treatment with AdIU1 alone, AdE4PSESE1a alone or in combination with GCV. Our results demonstrate the therapeutic potential of specific-oncolysis and suicide gene therapy for AI-PSA/PSMA-positive prostate cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56: 106–130.

    Article  PubMed  Google Scholar 

  2. Cheon J, Kim HK, Moon DG, Yoon DK, Cho JH, Koh SK . Adenovirus-mediated suicide-gene therapy using the herpes simplex virus thymidine kinase gene in cell and animal models of human prostate cancer: changes in tumour cell proliferative activity. BJU Int 2000; 85: 759–766.

    Article  CAS  PubMed  Google Scholar 

  3. van der Poel HG, McCadden J, Verhaegh GW, Kruszewski M, Ferrer F, Schalken JA et al. A novel method for the determination of basal gene expression of tissue-specific promoters: an analysis of prostate-specific promoters. Cancer Gene Ther 2001; 8: 927–935.

    Article  CAS  PubMed  Google Scholar 

  4. Latham JP, Searle PF, Mautner V, James ND . Prostate-specific antigen promoter/enhancer driven gene therapy for prostate cancer: construction and testing of a tissue-specific adenovirus vector. Cancer Res 2000; 60: 334–341.

    CAS  PubMed  Google Scholar 

  5. Steiner MS, Gingrich JR . Gene therapy for prostate cancer: where are we now? J Urol 2000; 164: 1121–1136.

    Article  CAS  PubMed  Google Scholar 

  6. O’Keefe DS, Uchida A, Bacich DJ, Watt FB, Martorana A, Molloy PL et al. Prostate-specific suicide gene therapy using the prostate-specific membrane antigen promoter and enhancer. Prostate 2000; 45: 149–157.

    Article  PubMed  Google Scholar 

  7. Xing Y, Lu G, Xiao Y, Zeng F, Zhang Q, Xiong P et al. Bystander effect mediated by herpes simplex virus-thymidine kinase/ganciclovir approach on prostatic cancer cells and its regulation. Zhonghua Yi Xue Za Zhi 2002; 82: 1484–1487.

    CAS  PubMed  Google Scholar 

  8. Park HS, Cheon J, Cho HY, Ko YH, Bae JH, Moon DG et al. In vivo characterization of a prostate-specific antigen promoter-based suicide gene therapy for the treatment of benign prostatic hyperplasia. Gene Therapy 2003; 10: 1129–1134.

    Article  CAS  PubMed  Google Scholar 

  9. Ko SC, Cheon J, Kao C, Gotoh A, Shirakawa T, Sikes RA et al. Osteocalcin promoter-based toxic gene therapy for the treatment of osteosarcoma in experimental models. Cancer Res 1996; 56: 4614–4619.

    CAS  PubMed  Google Scholar 

  10. Springer CJ, Niculescu-Duvaz I . Prodrug-activating systems in suicide gene therapy. J Clin Invest 2000; 105: 1161–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Denny WA . Prodrugs for Gene-Directed Enzyme-Prodrug Therapy (Suicide Gene Therapy). J Biomed Biotechnol 2003; 2003: 48–70.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schepelmann S, Springer CJ . Viral vectors for gene-directed enzyme prodrug therapy. Curr Gene Ther 2006; 6: 647–670.

    Article  CAS  PubMed  Google Scholar 

  13. Yu DC, Sakamoto GT, Henderson DR . Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res 1999; 59: 1498–1504.

    CAS  PubMed  Google Scholar 

  14. Matsubara S, Wada Y, Gardner TA, Egawa M, Park MS, Hsieh CL et al. A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Cancer Res 2001; 61: 6012–6019.

    CAS  PubMed  Google Scholar 

  15. DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001; 61: 7464–7472.

    CAS  PubMed  Google Scholar 

  16. Sadeghi H, Hitt MM . Transcriptionally targeted adenovirus vectors. Curr Gene Ther 2005; 5: 411–427.

    Article  CAS  PubMed  Google Scholar 

  17. Wu L, Matherly J, Smallwood A, Adams JY, Billick E, Belldegrun A et al. Chimeric PSA enhancers exhibit augmented activity in prostate cancer gene therapy vectors. Gene Therapy 2001; 8: 1416–1426.

    Article  CAS  PubMed  Google Scholar 

  18. Diamandis EP, Yousef GM . Human tissue kallikreins: a family of new cancer biomarkers. Clin Chem 2002; 48: 1198–1205.

    CAS  PubMed  Google Scholar 

  19. Hsieh CL, Gardner TA, Miao L, Balian G, Chung LW . Cotargeting tumor and stroma in a novel chimeric tumor model involving the growth of both human prostate cancer and bone stromal cells. Cancer Gene Ther 2004; 11: 148–155.

    Article  CAS  PubMed  Google Scholar 

  20. Kubo H, Gardner TA, Wada Y, Koeneman KS, Gotoh A, Yang L et al. Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Hum Gene Ther 2003; 14: 227–241.

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR . Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57: 2559–2563.

    CAS  PubMed  Google Scholar 

  22. Galanis E, Vile R, Russell SJ . Delivery systems intended for in vivo gene therapy of cancer: targeting and replication competent viral vectors. Crit Rev Oncol Hematol 2001; 38: 177–192.

    Article  CAS  PubMed  Google Scholar 

  23. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH . A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 1998; 9: 1323–1333.

    Article  CAS  PubMed  Google Scholar 

  24. Freytag SO, Khil M, Stricker H, Peabody J, Menon M, DePeralta-Venturina M et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 2002; 62: 4968–4976.

    CAS  PubMed  Google Scholar 

  25. Freytag SO, Stricker H, Pegg J, Paielli D, Pradhan DG, Peabody J et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res 2003; 63: 7497–7506.

    CAS  PubMed  Google Scholar 

  26. Edwards SJ, Dix BR, Myers CJ, Dobson-Le D, Huschtscha L, Hibma M et al. Evidence that replication of the antitumor adenovirus ONYX-015 is not controlled by the p53 and p14(ARF) tumor suppressor genes. J Virol 2002; 76: 12483–12490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H . Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998; 72: 9470–9478.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6: 611–623.

    Article  PubMed  Google Scholar 

  29. O’Shea CC, Soria C, Bagus B, McCormick F . Heat shock phenocopies E1B-55 K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. Cancer Cell 2005; 8: 61–74.

    Article  PubMed  Google Scholar 

  30. Lee SJ, Kim HS, Yu R, Lee K, Gardner TA, Jung C et al. Novel prostate-specific promoter derived from PSA and PSMA enhancers. Mol Ther 2002; 6: 415–421.

    Article  CAS  PubMed  Google Scholar 

  31. Li X, Zhang YP, Kim HS, Bae KH, Stantz KM, Lee SJ et al. Gene therapy for prostate cancer by controlling adenovirus E1a and E4 gene expression with PSES enhancer. Cancer Res 2005; 65: 1941–1951.

    Article  CAS  PubMed  Google Scholar 

  32. Lee SJ, Lee K, Yang X, Jung C, Gardner T, Kim HS et al. NFATc1 with AP-3 site binding specificity mediates gene expression of prostate-specific-membrane-antigen. J Mol Biol 2003; 330: 749–760.

    Article  CAS  PubMed  Google Scholar 

  33. Hallenbeck PL, Chang YN, Hay C, Golightly D, Stewart D, Lin J et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther 1999; 10: 1721–1733.

    Article  CAS  PubMed  Google Scholar 

  34. Kim JH, Kim SH, Brown SL, Freytag SO . Selective enhancement by an antiviral agent of the radiation-induced cell killing of human glioma cells transduced with HSV-tk gene. Cancer Res 1994; 54: 6053–6056.

    CAS  PubMed  Google Scholar 

  35. Kim JH, Kim SH, Kolozsvary A, Brown SL, Kim OB, Freytag SO . Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents. Int J Radiat Oncol Biol Phys 1995; 33: 861–868.

    Article  CAS  PubMed  Google Scholar 

  36. Rogulski KR, Wing MS, Paielli DL, Gilbert JD, Kim JH, Freytag SO . Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum Gene Ther 2000; 11: 67–76.

    Article  CAS  PubMed  Google Scholar 

  37. Rogulski KR, Freytag SO, Zhang K, Gilbert JD, Paielli DL, Kim JH et al. In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res 2000; 60: 1193–1196.

    CAS  PubMed  Google Scholar 

  38. Freytag SO, Paielli D, Wing M, Rogulski K, Brown S, Kolozsvary A et al. Efficacy and toxicity of replication-competent adenovirus-mediated double suicide gene therapy in combination with radiation therapy in an orthotopic mouse prostate cancer model. Int J Radiat Oncol Biol Phys 2002; 54: 873–885.

    Article  CAS  PubMed  Google Scholar 

  39. Small EJ, Carducci MA, Burke JM, Rodriguez R, Fong L, van Ummersen L et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther 2006; 14: 107–117.

    Article  CAS  PubMed  Google Scholar 

  40. Dilley J, Reddy S, Ko D, Nguyen N, Rojas G, Working P et al. Oncolytic adenovirus CG7870 in combination with radiation demonstrates synergistic enhancements of antitumor efficacy without loss of specificity. Cancer Gene Ther 2005; 12: 715–722.

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y, DeWeese T, Dilley J, Zhang Y, Li Y, Ramesh N et al. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res 2001; 61: 5453–5460.

    CAS  PubMed  Google Scholar 

  42. Wang JQ, Zheng QH, Fei X, Mock BH, Hutchins GD . Novel radiosynthesis of PET HSV-tk gene reporter probes [18F]FHPG and [18F]FHBG employing dual Sep-Pak SPE techniques. Bioorg Med Chem Lett 2003; 13: 3933–3938.

    Article  CAS  PubMed  Google Scholar 

  43. Lambright ES, Amin K, Wiewrodt R, Force SD, Lanuti M, Propert KJ et al. Inclusion of the herpes simplex thymidine kinase gene in a replicating adenovirus does not augment antitumor efficacy. Gene Therapy 2001; 8: 946–953.

    Article  CAS  PubMed  Google Scholar 

  44. Morris JC, Wildner O . Therapy of head and neck squamous cell carcinoma with an oncolytic adenovirus expressing HSV-tk. Mol Ther 2000; 1: 56–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Black, Department of pharmaceutical Sciences, Washington State University for providing the TK-polyclonal antibody. These studies were supported by NIH K08 CA079544-01A2 and DOD DAMD 17-03-1-0077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T A Gardner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, M., Lee, SJ., Li, X. et al. Enhanced combined tumor-specific oncolysis and suicide gene therapy for prostate cancer using M6 promoter. Cancer Gene Ther 16, 73–82 (2009). https://doi.org/10.1038/cgt.2008.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.59

Keywords

This article is cited by

Search

Quick links