Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy

Abstract

Oncolytic viruses (OVs) are promising therapeutic agents for cancer treatment, with recent studies emphasizing the combined use of chemotherapeutic compounds and prodrug suicide gene strategies to improve OV efficacy. In the present study, the synergistic activity of recombinant vesicular stomatitis virus (VSV)-MΔ51 virus expressing the cytosine deaminase/uracil phosphoribosyltransferase (CD::UPRT) suicide gene and 5-fluorocytosine (5FC) prodrug was investigated in triggering tumor cell oncolysis. In a panel of VSV-sensitive and -resistant cells—prostate PC3, breast MCF7 and TSA, B-lymphoma Karpas and melanoma B16-F10—the combination treatment increased killing of non-infected bystander cells in vitro via the release of 5FC toxic derivatives. In addition, we showed a synergistic effect on cancer cell killing with VSV-MΔ51 and the active form of the drug 5-fluorouracil. Furthermore, by monitoring VSV replication at the tumor site and maximizing 5FC bioavailability, we optimized the treatment regimen and improved survival of animals bearing TSA mammary adenocarcinoma. Altogether, this study emphasizes the potency of the VSV-CD::UPRT and 5FC combination, and demonstrates the necessity of optimizing each step of a multicomponent therapy to design efficient treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rowan K . Oncolytic viruses move forward in clinical trials. J Natl Cancer Inst 2010; 102: 590–595.

    Article  PubMed  Google Scholar 

  2. Bell J . Oncolytic viruses: an approved product on the horizon? Mol Ther 2010; 18: 233–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cattaneo R, Miest T, Shashkova EV, Barry MA . Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol 2008; 6: 529–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barber GN . VSV-tumor selective replication and protein translation. Oncogene 2005; 24: 7710–7719.

    Article  CAS  PubMed  Google Scholar 

  5. Lichty BD, Power AT, Stojdl DF, Bell JC . Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 2004; 10: 210–216.

    Article  CAS  PubMed  Google Scholar 

  6. Stojdl DF, Lichty BD, tenOever BR, Paterson JM, Power AT, Knowles S et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 2003; 4: 263–275.

    Article  CAS  PubMed  Google Scholar 

  7. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6: 821–825.

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen TL, Tumilasci VF, Singhroy D, Arguello M, Hiscott J . The emergence of combinatorial strategies in the development of RNA oncolytic virus therapies. Cell Microbiol 2009; 11: 889–897.

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen TL, Abdelbary H, Arguello M, Breitbach C, Leveille S, Diallo JS et al. Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci USA 2008; 105: 14981–14986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tumilasci VF, Oliere S, Nguyen TL, Shamy A, Bell J, Hiscott J . Targeting the apoptotic pathway with BCL-2 inhibitors sensitizes primary chronic lymphocytic leukemia cells to vesicular stomatitis virus-induced oncolysis. J Virol 2008; 82: 8487–8499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alain T, Lun X, Martineau Y, Sean P, Pulendran B, Petroulakis E et al. Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc Natl Acad Sci USA 2010; 107: 1576–1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schache P, Gurlevik E, Struver N, Woller N, Malek N, Zender L et al. VSV virotherapy improves chemotherapy by triggering apoptosis due to proteasomal degradation of Mcl-1. Gene Ther 2009; 16: 849–861.

    Article  CAS  PubMed  Google Scholar 

  13. Portsmouth D, Hlavaty J, Renner M . Suicide genes for cancer therapy. Mol Aspects Med 2007; 28: 4–41.

    Article  CAS  PubMed  Google Scholar 

  14. Lawson ND, Stillman EA, Whitt MA, Rose JK . Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci USA 1995; 92: 4477–4481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernandez M, Porosnicu M, Markovic D, Barber GN . Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J Virol 2002; 76: 895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goel A, Carlson SK, Classic KL, Greiner S, Naik S, Power AT et al. Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV(Delta51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene. Blood 2007; 110: 2342–2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dachs GU, Tupper J, Tozer GM . From bench to bedside for gene-directed enzyme prodrug therapy of cancer. Anticancer Drugs 2005; 16: 349–359.

    Article  CAS  PubMed  Google Scholar 

  18. Foloppe J, Kintz J, Futin N, Findeli A, Cordier P, Schlesinger Y et al. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther 2008; 15: 1361–1371.

    Article  CAS  PubMed  Google Scholar 

  19. Koyama F, Sawada H, Hirao T, Fujii H, Hamada H, Nakano H . Combined suicide gene therapy for human colon cancer cells using adenovirus-mediated transfer of Escherichia coli cytosine deaminase gene and Escherichia coli uracil phosphoribosyltransferase gene with 5-fluorocytosine. Cancer Gene Ther 2000; 7: 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Deisseroth A . Oncolytic adenoviral vector carrying the cytosine deaminase gene for melanoma gene therapy. Cancer Gene Ther 2006; 13: 845–855.

    Article  CAS  PubMed  Google Scholar 

  21. Khatri A, Zhang B, Doherty E, Chapman J, Ow K, Pwint H et al. Combination of cytosine deaminase with uracil phosphoribosyl transferase leads to local and distant bystander effects against RM1 prostate cancer in mice. J Gene Med 2006; 8: 1086–1096.

    Article  CAS  PubMed  Google Scholar 

  22. Porosnicu M, Mian A, Barber GN . The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene. Cancer Res 2003; 63: 8366–8376.

    CAS  PubMed  Google Scholar 

  23. Ahmed M, McKenzie MO, Puckett S, Hojnacki M, Poliquin L, Lyles DS . Ability of the matrix protein of vesicular stomatitis virus to suppress beta interferon gene expression is genetically correlated with the inhibition of host RNA and protein synthesis. J Virol 2003; 77: 4646–4657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Faria PA, Chakraborty P, Levay A, Barber GN, Ezelle HJ, Enninga J et al. VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway. Mol Cell 2005; 17: 93–102.

    Article  CAS  PubMed  Google Scholar 

  25. Bernt KM, Ni S, Tieu AT, Lieber A . Assessment of a combined, adenovirus-mediated oncolytic and immunostimulatory tumor therapy. Cancer Res 2005; 65: 4343–4352.

    Article  CAS  PubMed  Google Scholar 

  26. Oliere S, Arguello M, Mesplede T, Tumilasci V, Nakhaei P, Stojdl D et al. Vesicular stomatitis virus oncolysis of T lymphocytes requires cell cycle entry and translation initiation. J Virol 2008; 82: 5735–5749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuriyama S, Kikukawa M, Masui K, Okuda H, Nakatani T, Sakamoto T et al. Cytosine deaminase/5-fluorocytosine gene therapy can induce efficient anti-tumor effects and protective immunity in immunocompetent mice but not in athymic nude mice. Int J Cancer 1999; 81: 592–597.

    Article  CAS  PubMed  Google Scholar 

  28. Chou TC and Talalay . Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58: 621–681.

    CAS  PubMed  Google Scholar 

  29. Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther 2007; 15: 1686–1693.

    Article  CAS  PubMed  Google Scholar 

  30. Galivo F, Diaz RM, Wongthida P, Thompson J, Kottke T, Barber G et al. Single-cycle viral gene expression, rather than progressive replication and oncolysis, is required for VSV therapy of B16 melanoma. Gene Ther 2010; 17: 158–170.

    Article  CAS  PubMed  Google Scholar 

  31. Huber BE, Austin EA, Good SS, Knick VC, Tibbels S, Richards CA . In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase. Cancer Res 1993; 53: 4619–4626.

    CAS  PubMed  Google Scholar 

  32. Andes D, van Ogtrop M . In vivo characterization of the pharmacodynamics of flucytosine in a neutropenic murine disseminated candidiasis model. Antimicrob Agents Chemother 2000; 44: 938–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stegman LD, Rehemtulla A, Beattie B, Kievit E, Lawrence TS, Blasberg RG et al. Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc Natl Acad Sci USA 1999; 96: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Byfield JE, Murnane J, Ward JF, Calabro-Jones P, Lynch M, Kulhanian F . Mice, men, mustard and methylated xanthines: the potential role of caffeine and related drugs in the sensitization of human tumours to alkylating agents. Br J Cancer 1981; 43: 669–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. te Dorsthorst DT, Verweij PE, Meis JF, Mouton JW . Efficacy and pharmacodynamics of flucytosine monotherapy in a nonneutropenic murine model of invasive aspergillosis. Antimicrob Agents Chemother 2005; 49: 4220–4226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants to JH from the National Cancer Institute of Canada (NCIC) with funds from the Terry Fox Foundation and the Canadian Institutes of Health Research. SL was supported by a Studentship from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Hiscott.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leveille, S., Samuel, S., Goulet, ML. et al. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer Gene Ther 18, 435–443 (2011). https://doi.org/10.1038/cgt.2011.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.14

Keywords

This article is cited by

Search

Quick links