Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Type I IFN gene delivery suppresses regulatory T cells within tumors

Abstract

Type I interferon (IFN) is a pleiotropic cytokine regulating the cancer cell death and immune response. IFN-α can, as we have also reported, effectively induce an antitumor immunity by the activation of tumor-specific T cells and maturation of dendritic cells in various animal models. Unknown, however, is how the type I IFN alters the immunotolerant microenvironment in the tumors. Here, we found that intratumoral IFN-α gene transfer significantly decreased the frequency of regulatory T cells (Tregs) per CD4+ T cells in tumors. The concentration of a Treg-inhibitory cytokine, interleukin (IL)-6, was correlated with the IFN-α expression level in tumors, and intratumoral CD11c+ cells produced IL-6 in response to IFN-α stimulation. To confirm the role of IL-6 in the suppression of Tregs in tumors, an anti-IL-6 receptor antibody was administered in IFN-α-treated mice. The antibody increased the frequency of Tregs in the tumors, and attenuated systemic tumor-specific immunity induced by IFN-α. Furthermore, the IFN-α-mediated IL-6 production increased the frequency of Th17 cells in the tumors, which may be one of the mechanisms for the reduction of Tregs. The study demonstrated that IFN-α gene delivery creates an environment strongly supporting the enhancement of antitumor immunity through the suppression of Tregs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gonzalez-Navajas JM, Lee J, David M, Raz E . Immunomodulatory functions of type I interferons. Nat Rev Immunol 2012; 12: 125–135.

    Article  CAS  Google Scholar 

  2. Ferrantini M, Capone I, Belardelli F . Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 2007; 89: 884–893.

    Article  CAS  Google Scholar 

  3. Rizza P, Moretti F, Belardelli F . Recent advances on the immunomodulatory effects of IFN-alpha: implications for cancer immunotherapy and autoimmunity. Autoimmunity 2010; 43: 204–209.

    Article  CAS  Google Scholar 

  4. Escobar G, Moi D, Ranghetti A, Ozkal-Baydin P, Squadrito ML, Kajaste-Rudnitski A et al. Genetic engineering of hematopoiesis for targeted IFN-alpha delivery inhibits breast cancer progression. Sci Transl Med 2014; 6: 217ra3.

    Article  Google Scholar 

  5. Narumi K, Kondoh A, Udagawa T, Hara H, Goto N, Ikarashi Y et al. Administration route-dependent induction of antitumor immunity by interferon-alpha gene transfer. Cancer Sci 2010; 101: 1686–1694.

    Article  CAS  Google Scholar 

  6. Ohashi M, Yoshida K, Kushida M, Miura Y, Ohnami S, Ikarashi Y et al. Adenovirus-mediated interferon alpha gene transfer induces regional direct cytotoxicity and possible systemic immunity against pancreatic cancer. Bri J Cancer 2005; 93: 441–449.

    Article  CAS  Google Scholar 

  7. Hatanaka K, Suzuki K, Miura Y, Yoshida K, Ohnami S, Kitade Y et al. Interferon-alpha and antisense K-ras RNA combination gene therapy against pancreatic cancer. J Gene Med 2004; 6: 1139–1148.

    Article  CAS  Google Scholar 

  8. Hara H, Kobayashi A, Yoshida K, Ohashi M, Ohnami S, Uchida E et al. Local interferon-alpha gene therapy elicits systemic immunity in a syngeneic pancreatic cancer model in hamster. Cancer Sci 2007; 98: 455–463.

    Article  CAS  Google Scholar 

  9. Udagawa T, Narumi K, Goto N, Aida K, Suzuki K, Ochiya T et al. Syngeneic hematopoietic stem cell transplantation enhances the antitumor immunity of intratumoral type I interferon gene transfer for sarcoma. Hum Gene Ther 2012; 23: 173–186.

    Article  CAS  Google Scholar 

  10. Belardelli F, Ferrantini M, Proietti E, Kirkwood JM . Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13: 119–134.

    Article  CAS  Google Scholar 

  11. Burdick LM, Somani N, Somani AK . Type I IFNs and their role in the development of autoimmune diseases. Expert Opin Drug Saf 2009; 8: 459–472.

    Article  CAS  Google Scholar 

  12. Santini SM, Lapenta C, Santodonato L, D'Agostino G, Belardelli F, Ferrantini M . IFN-alpha in the generation of dendritic cells for cancer immunotherapy. Handb Exp Pharmacol 2009; 188: 295–317.

    Article  CAS  Google Scholar 

  13. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 2007; 13: 902–911.

    Article  CAS  Google Scholar 

  14. Jacobs JF, Nierkens S, Figdor CG, de Vries IJ, Adema GJ . Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol 2012; 13: e32–e42.

    Article  CAS  Google Scholar 

  15. Byrne WL, Mills KH, Lederer JA, O'Sullivan GC . Targeting regulatory T cells in cancer. Cancer Res 2011; 71: 6915–6920.

    Article  CAS  Google Scholar 

  16. Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 2009; 182: 259–273.

    Article  CAS  Google Scholar 

  17. Cucak H, Yrlid U, Reizis B, Kalinke U, Johansson-Lindbom B . Type I interferon signaling in dendritic cells stimulates the development of lymph-node-resident T follicular helper cells. Immunity 2009; 31: 491–501.

    Article  CAS  Google Scholar 

  18. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005; 102: 18538–18543.

    Article  CAS  Google Scholar 

  19. Gnerlich JL, Mitchem JB, Weir JS, Sankpal NV, Kashiwagi H, Belt BA et al. Induction of Th17 cells in the tumor microenvironment improves survival in a murine model of pancreatic cancer. J Immunol 2010; 185: 4063–4071.

    Article  CAS  Google Scholar 

  20. Sharma MD, Hou DY, Liu Y, Koni PA, Metz R, Chandler P et al. Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 2009; 113: 6102–6111.

    Article  CAS  Google Scholar 

  21. Bacher N, Raker V, Hofmann C, Graulich E, Schwenk M, Baumgrass R et al. Interferon-alpha suppresses cAMP to disarm human regulatory T cells. Cancer Res 2013; 73: 5647–5656.

    Article  CAS  Google Scholar 

  22. Bacher N, Graulich E, Jonuleit H, Grabbe S, Steinbrink K . Interferon-alpha abrogates tolerance induction by human tolerogenic dendritic cells. PloS One 2011; 6: e22763.

    Article  CAS  Google Scholar 

  23. Pace L, Vitale S, Dettori B, Palombi C, La Sorsa V, Belardelli F et al. APC activation by IFN-alpha decreases regulatory T cell and enhances Th cell functions. J Immunol 2010; 184: 5969–5979.

    Article  CAS  Google Scholar 

  24. Dong C . TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008; 8: 337–348.

    Article  CAS  Google Scholar 

  25. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126: 1121–1133.

    Article  CAS  Google Scholar 

  26. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28: 29–39.

    Article  CAS  Google Scholar 

  27. Xu L, Kitani A, Fuss I, Strober W . Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 2007; 178: 6725–6729.

    Article  CAS  Google Scholar 

  28. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 2008; 29: 44–56.

    Article  CAS  Google Scholar 

  29. Zheng SG, Wang J, Horwitz DA . Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol 2008; 180: 7112–7116.

    Article  CAS  Google Scholar 

  30. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 2009; 15: 91–102.

    Article  CAS  Google Scholar 

  31. Grivennikov S, Karin M . Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 2008; 13: 7–9.

    Article  CAS  Google Scholar 

  32. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15: 103–113.

    Article  CAS  Google Scholar 

  33. Naugler WE, Karin M . The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 2008; 14: 109–119.

    Article  CAS  Google Scholar 

  34. Bromberg J, Wang TC . Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell 2009; 15: 79–80.

    Article  CAS  Google Scholar 

  35. Anglesio MS, George J, Kulbe H, Friedlander M, Rischin D, Lemech C et al. IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clin Cancer Res 2011; 17: 2538–2548.

    Article  CAS  Google Scholar 

  36. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R et al. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 2007; 67: 585–592.

    Article  CAS  Google Scholar 

  37. Song L, Rawal B, Nemeth JA, Haura EB . JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol Cancer Ther 2011; 10: 481–494.

    Article  CAS  Google Scholar 

  38. Guo Y, Nemeth J, O'Brien C, Susa M, Liu X, Zhang Z et al. Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clin Cancer Res 2010; 16: 5759–5769.

    Article  CAS  Google Scholar 

  39. Chari A, Pri-Chen H, Jagannath S . Complete remission achieved with single agent CNTO 328, an anti-IL-6 monoclonal antibody, in relapsed and refractory myeloma. Clin Lymphoma Myeloma Leukemia 2013; 13: 333–337.

    Article  CAS  Google Scholar 

  40. Rossi JF, Negrier S, James ND, Kocak I, Hawkins R, Davis H et al. A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer. Bri J Cancer 2010; 103: 1154–1162.

    Article  CAS  Google Scholar 

  41. Fizazi K, De Bono JS, Flechon A, Heidenreich A, Voog E, Davis NB et al. Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer. Eur J Cancer 2012; 48: 85–93.

    Article  CAS  Google Scholar 

  42. Mule JJ, Custer MC, Travis WD, Rosenberg SA . Cellular mechanisms of the antitumor activity of recombinant IL-6 in mice. J Immunol 1992; 148: 2622–2629.

    CAS  PubMed  Google Scholar 

  43. Mullen CA, Coale MM, Levy AT, Stetler-Stevenson WG, Liotta LA, Brandt S et al. Fibrosarcoma cells transduced with the IL-6 gene exhibited reduced tumorigenicity, increased immunogenicity, and decreased metastatic potential. Cancer Res 1992; 52: 6020–6024.

    CAS  PubMed  Google Scholar 

  44. Porgador A, Tzehoval E, Katz A, Vadai E, Revel M, Feldman M et al. Interleukin 6 gene transfection into Lewis lung carcinoma tumor cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res 1992; 52: 3679–3686.

    CAS  PubMed  Google Scholar 

  45. Fisher DT, Chen Q, Skitzki JJ, Muhitch JB, Zhou L, Appenheimer MM et al. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J Clin Invest 2011; 121: 3846–3859.

    Article  CAS  Google Scholar 

  46. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H . IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 2009; 206: 1457–1464.

    Article  CAS  Google Scholar 

  47. Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 2009; 31: 787–798.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Chugai Pharmaceutical Co. for providing the MR16-1 antibody. This work was supported in part by a grant-in-aid for the 3rd Term Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare of Japan, grants-in-aid for research from the Ministry of Health, Labour and Welfare of Japan, by the program for promotion of Foundation Studies in Health Science of the National Institute of Biomedical Innovation (NIBIO), and by the National Cancer Center Research and Development Fund (23-A-38 and 23-A-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Aoki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, H., Ueda, R., Narumi, K. et al. Type I IFN gene delivery suppresses regulatory T cells within tumors. Cancer Gene Ther 21, 532–541 (2014). https://doi.org/10.1038/cgt.2014.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.60

This article is cited by

Search

Quick links