Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IDO1 in cancer: a Gemini of immune checkpoints

Abstract

Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting metabolic enzyme that converts the essential amino acid tryptophan (Trp) into downstream catabolites known as kynurenines. Coincidently, numerous studies have demonstrated that IDO1 is highly expressed in multiple types of human cancer. Preclinical studies have further introduced an interesting paradox: while single-agent treatment with IDO1 enzyme inhibitor has a negligible effect on decreasing the established cancer burden, approaches combining select therapies with IDO1 blockade tend to yield a synergistic benefit against tumor growth and/or animal subject survival. Given the high expression of IDO1 among multiple cancer types along with the lack of monotherapeutic efficacy, these data suggest that there is a more complex mechanism of action than previously appreciated. Similar to the dual faces of the astrological Gemini, we highlight the multiple roles of IDO1 and review its canonical association with IDO1-dependent tryptophan metabolism, as well as documented evidence confirming the dispensability of enzyme activity for its immunosuppressive effects. The gene transcript levels for IDO1 highlight its strong association with T-cell infiltration, but the lack of a universal prognostic significance among all cancer subtypes. Finally, ongoing clinical trials are discussed with consideration of IDO1-targeting strategies that enhance the efficacy of immunotherapy for cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369: 122–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rizvi NA, Mazieres J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 2015; 16: 257–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015; 373: 1803–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015; 348: 56–61.

    Article  CAS  PubMed  Google Scholar 

  5. Smyth MJ, Ngiow SF, Ribas A, Teng MWL. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 2015; 13: 143–158 advance online publication.

    Article  PubMed  CAS  Google Scholar 

  6. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13: 273–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shrimali RK, Shamim A, Verma V, Zeng P, Ananth S, Gaur P et al. Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res 2017; 5: 755–766.

    Article  CAS  PubMed  Google Scholar 

  8. Zhai L, Ladomersky E, Dostal CR, Lauing KL, Swoap K, Billingham LK et al. Non-tumor cell IDO1 predominantly contributes to enzyme activity and response to CTLA-4/PD-L1 inhibition in mouse glioblastoma. Brain Behav Immun 2017; 62: 24–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol 2016; 37: 193–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003; 9: 1269–1274.

    Article  CAS  PubMed  Google Scholar 

  11. Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 2007; 67: 792–801.

    Article  CAS  PubMed  Google Scholar 

  12. Koblish HK, Hansbury MJ, Bowman KJ, Yang G, Neilan CL, Haley PJ et al. Hydroxyamidine inhibitors of indoleamine-2,3-dioxygenase potently suppress systemic tryptophan catabolism and the growth of IDO-expressing tumors. Mol Cancer Ther 2010; 9: 489–498.

    Article  CAS  PubMed  Google Scholar 

  13. Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim C, Tobias AL et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4 and PD-L1 in mice with brain tumors. Clini Cancer Res 2014; 20: 5290–5301.

    Article  CAS  Google Scholar 

  14. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 2013; 210: 1389–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vacchelli E, Aranda F, Eggermont A, Sautes-Fridman C, Tartour E, Kennedy EP et al. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2014; 3: e957994.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Beatty GL, O'Dwyer PJ, Clark J, Shi JG, Bowman KJ, Scherle PA et al. First-in-human phase I study of the oral inhibitor of indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients with advanced solid malignancies. Clin Cancer Res 2017; 23: 3269–3276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Theate I, van Baren N, Pilotte L, Moulin P, Larrieu P, Renauld JC et al. Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues. Cancer Immunol Res 2015; 3: 161–172.

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Bolduc AR, Hoda MN, Gamble DN, Dolisca SB, Bolduc AK et al. The indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemo-radiation therapy against murine glioblastoma. J Immunother Cancer 2014; 2: 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 2010; 115: 3520–3530.

    Article  CAS  PubMed  Google Scholar 

  20. Opitz CA, Litzenburger UM, Opitz U, Sahm F, Ochs K, Lutz C et al. The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS ONE 2011; 6: e19823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 2011; 12: 870–878.

    Article  CAS  PubMed  Google Scholar 

  22. Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM. L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int J Tryptophan Res 2009; 2: 45–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beadle GW, Mitchell HK, Nyc JF. Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by neurospora. Proc Natl Acad Sci USA 1947; 33: 155–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pantouris G, Serys M, Yuasa HJ, Ball HJ, Mowat CG. Human indoleamine 2,3-dioxygenase-2 has substrate specificity and inhibition characteristics distinct from those of indoleamine 2,3-dioxygenase-1. Amino Acids 2014; 46: 2155–2163.

    Article  CAS  PubMed  Google Scholar 

  25. Batabyal D, Yeh SR. Human tryptophan dioxygenase: a comparison to indoleamine 2,3-dioxygenase. J Am Chem Soc 2007; 129: 15690–15701.

    Article  CAS  PubMed  Google Scholar 

  26. Murray MF. The human indoleamine 2,3-dioxygenase gene and related human genes. Curr Drug Metab 2007; 8: 197–200.

    Article  CAS  PubMed  Google Scholar 

  27. Yuasa HJ, Ball HJ, Ho YF, Austin CJ, Whittington CM, Belov K et al. Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases IDOs from monotremes and marsupials. Comp Biochem Physiol B Biochem Mol Biol 2009; 153: 137–144.

    Article  PubMed  CAS  Google Scholar 

  28. Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 2002; 1: 609–620.

    Article  CAS  PubMed  Google Scholar 

  29. Ladomersky E, Zhai L, Gritsina G, Genet M, Lauing KL, Wu M et al. Advanced age negatively impacts survival in an experimental brain tumor model. Neurosci Lett 2016; 630: 203–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Baren N, Van den Eynde BJ. Tryptophan-degrading enzymes in tumoral immune resistance. Front Immunol 2015; 6: 1–9.

    Article  CAS  Google Scholar 

  31. Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ et al. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res 2015; 21: 5427–5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ott M, Litzenburger UM, Rauschenbach KJ, Bunse L, Ochs K, Sahm F et al. Suppression of TDO-mediated tryptophan catabolism in glioblastoma cells by a steroid-responsive FKBP52-dependent pathway. Glia 2015; 63: 78–90.

    Article  PubMed  Google Scholar 

  33. Knox WE. Two mechanisms which increase in vivo the liver tryptophan peroxidase activity: specific enzyme adaptation and stimulation of the pituitary adrenal system. Br J Exp Pathol 1951; 32: 462–469.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hassanain HH, Chon SY, Gupta SL. Differential regulation of human indoleamine 2,3-dioxygenase gene expression by interferons-gamma and -alpha. Analysis of the regulatory region of the gene and identification of an interferon-gamma-inducible DNA-binding factor. J Biol Chem 1993; 268: 5077–5084.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor MW, Feng GS. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 1991; 5: 2516–2522.

    Article  CAS  PubMed  Google Scholar 

  36. Yoshida R, Hayaishi O. Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proc Natl Acad Sci USA 1978; 75: 3998–4000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fujigaki S, Saito K, Sekikawa K, Tone S, Takikawa O, Fujii H et al. Lipopolysaccharide induction of indoleamine 2,3-dioxygenase is mediated dominantly by an IFN-gamma-independent mechanism. Eur J Immunol 2001; 31: 2313–2318.

    Article  CAS  PubMed  Google Scholar 

  38. Babcock TA, Carlin JM. Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor alpha in interferon-treated epithelial cells. Cytokine 2000; 12: 588–594.

    Article  CAS  PubMed  Google Scholar 

  39. Mellor AL, Baban B, Chandler PR, Manlapat A, Kahler DJ, Munn DH. Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN Type 1 signaling. J Immunol 2005; 175: 5601–5605.

    Article  CAS  PubMed  Google Scholar 

  40. Braun D, Longman RS, Albert ML. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 2005; 106: 2375–2381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prendergast GC, Metz R, Muller AJ, Merlo LM, Mandik-Nayak L. IDO2 in immunomodulation and autoimmune disease. Front Immunol 2014; 5: 585.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011; 478: 197–203.

    Article  CAS  PubMed  Google Scholar 

  43. Vogel CFA, Goth SR, Dong B, Pessah IN, Matsumura F. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun 2008; 375: 331–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bankoti J, Rase B, Simones T, Shepherd DM. Functional and phenotypic effects of AhR activation in inflammatory dendritic cells. Toxicol Appl Pharmacol 2010; 246: 18–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mautino MR, Metz RA, Jaipuri F, Waldo J, Kumar S, Marcinowicz-Flick A et al. Abstract 1633: novel specific- and dual- tryptophan-2,3-dioxygenase (TDO) and indoleamine-2,3-dioxygenase (IDO) inhibitors for tumor immunotherapy. Cancer Res 2014; 74: 1633.

    Google Scholar 

  46. Boyland E, Williams DC. The estimation of tryptophan metabolites in the urine of patients with cancer of the bladder. Biochem J 1955; 60: v.

    CAS  PubMed  Google Scholar 

  47. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281: 1191–1193.

    Article  CAS  PubMed  Google Scholar 

  48. Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 2005; 310: 850–855.

    Article  CAS  PubMed  Google Scholar 

  49. Friberg M, Jennings R, Alsarraj M, Dessureault S, Cantor A, Extermann M et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer 2002; 101: 151–155.

    Article  CAS  PubMed  Google Scholar 

  50. Grohmann U, Fallarino F, Puccetti P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 2003; 24: 242–248.

    Article  CAS  PubMed  Google Scholar 

  51. Wainwright DA, Dey M, Chang A, Lesniak MS. Targeting Tregs in malignant brain cancer: overcoming IDO. Front Immunol 2013; 4: 116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wainwright DA, Sengupta S, Han Y, Lesniak MS. Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro Oncol 2011; 13: 1308–1323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Malchow S, Leventhal DS, Nishi S, Fischer BI, Shen L, Paner GP et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science 2013; 339: 1219–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ye J, Qiu J, Bostick JW, Ueda A, Schjerven H, Li S et al. Aryl hydrocarbon receptor preferentially marks and promotes gut regulatory T cells. Cell Rep 2017; 21: 2277–2290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999; 189: 1363–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seymour RL, Ganapathy V, Mellor AL, Munn DH. A high-affinity, tryptophan-selective amino acid transport system in human macrophages. J Leukoc Biol 2006; 80: 1320–1327.

    Article  CAS  PubMed  Google Scholar 

  57. Hayashi T, Mo JH, Gong X, Rossetto C, Jang A, Beck L et al. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci USA 2007; 104: 18619–18624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Munn DH. Blocking IDO activity to enhance anti-tumor immunity. Front Biosci 2012; 4: 734–745.

    Article  Google Scholar 

  59. Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 2007; 117: 1147–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mellor AL, Munn DH. Ido expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004; 4: 762–774.

    Article  CAS  PubMed  Google Scholar 

  61. Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 2011; 12: 870–878.

    Article  CAS  PubMed  Google Scholar 

  62. Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon K-S, Auffinger B et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 2012; 18: 6110–6121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhai L, Ladomersky E, Dostal CR, Lauing KL, Swoap K, Billingham LK et al. Non-tumor cell IDO1 predominantly contributes to enzyme activity and response to CTLA-4/PD-L1 inhibition in mouse glioblastoma. Brain Behav Immun 2017; 62: 24–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu Y, Liang X, Yin X, Lv J, Tang K, Ma J et al. Blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-gamma-induced immunologic dormancy of tumor-repopulating cells. Nat Commun 2017; 8: 15207.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Huang L, Li L, Lemos H, Chandler PR, Pacholczyk G, Baban B et al. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses. J Immunol 2013; 191: 3509–3513.

    Article  CAS  PubMed  Google Scholar 

  66. Lemos H, Mohamed E, Huang L, Ou R, Pacholczyk G, Arbab AS et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res 2016; 76: 2076–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 2015; 11: 1018–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12: 860–875.

    Article  CAS  PubMed  Google Scholar 

  69. Ravishankar B, Liu H, Shinde R, Chaudhary K, Xiao W, Bradley J et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity. Proc Natl Acad Sci USA 2015; 112: 10774–10779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ravishankar B, Shinde R, Liu H, Chaudhary K, Bradley J, Lemos HP et al. Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance. Proc Natl Acad Sci USA 2014; 111: 4215–4220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ravishankar B, Liu H, Shinde R, Chandler P, Baban B, Tanaka M et al. Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. Proc Natl Acad Sci USA 2012; 109: 3909–3914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharma MD, Shinde R, McGaha TL, Huang L, Holmgaard RB, Wolchok JD et al. The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. Sci Adv 2015; 1: e1500845.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Solito S, Pinton L, Damuzzo V, Mandruzzato S. Highlights on molecular mechanisms of MDSC-mediated immune suppression: paving the way for new working hypotheses. Immunol Invest 2012; 41: 722–737.

    Article  CAS  PubMed  Google Scholar 

  74. Yu J, Du W, Yan F, Wang Y, Li H, Cao S et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 2013; 190: 3783–3797.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang H, Maric I, DiPrima MJ, Khan J, Orentas RJ, Kaplan RN et al. Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood 2013; 122: 1105–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jitschin R, Braun M, Buttner M, Dettmer-Wilde K, Bricks J, Berger J et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood 2014; 124: 750–760.

    Article  CAS  PubMed  Google Scholar 

  77. Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP et al. Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep 2015; 13: 412–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mellor AL, Sivakumar J, Chandler P, Smith K, Molina H, Mao D et al. Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat Immunol 2001; 2: 64–68.

    Article  CAS  PubMed  Google Scholar 

  79. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer 2014; 2: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 2003; 4: 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  81. Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G et al. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival. Clin Cancer Res 2017; 23: 6650–6660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chamuleau ME, van de Loosdrecht AA, Hess CJ, Janssen JJ, Zevenbergen A, Delwel R et al. High INDO (indoleamine 2,3-dioxygenase) mRNA level in blasts of acute myeloid leukemic patients predicts poor clinical outcome. Haematologica 2008; 93: 1894–1898.

    Article  CAS  PubMed  Google Scholar 

  83. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clinical Cancer Res 2006; 12: 1144–1151.

    Article  CAS  Google Scholar 

  84. Astigiano S, Morandi B, Costa R, Mastracci L, D'Agostino A, Ratto GB et al. Eosinophil granulocytes account for indoleamine 2,3-dioxygenase-mediated immune escape in human non-small cell lung cancer. Neoplasia 2005; 7: 390–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Suzuki Y, Suda T, Furuhashi K, Suzuki M, Fujie M, Hahimoto D et al. Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer. Lung Cancer 2010; 67: 361–365.

    Article  PubMed  Google Scholar 

  86. Feder-Mengus C, Wyler S, Hudolin T, Ruszat R, Bubendorf L, Chiarugi A et al. High expression of indoleamine 2,3-dioxygenase gene in prostate cancer. Eur J Cancer 2008; 44: 2266–2275.

    Article  CAS  PubMed  Google Scholar 

  87. Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y et al. Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res 2005; 11: 6030–6039.

    Article  CAS  PubMed  Google Scholar 

  88. Takao M, Okamoto A, Nikaido T, Urashima M, Takakura S, Saito M et al. Increased synthesis of indoleamine-2,3-dioxygenase protein is positively associated with impaired survival in patients with serous-type, but not with other types of, ovarian cancer. Oncol Rep 2007; 17: 1333–1339.

    CAS  PubMed  Google Scholar 

  89. Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K et al. Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br J Cancer 2006; 95: 1555–1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sakurai K, Enomoto K, Amano S, Kimura T, Sugito K, Kimizuka K et al. [Study of indoleamine 2,3-dioxygenase expression in patients of esophageal squamous cell carcinoma]. Gan To Kagaku Ryoho 2004; 31: 1780–1782.

    PubMed  Google Scholar 

  91. Riesenberg R, Weiler C, Spring O, Eder M, Buchner A, Popp T et al. Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin Cancer Res 2007; 13: 6993–7002.

    Article  CAS  PubMed  Google Scholar 

  92. Ishio T, Goto S, Tahara K, Tone S, Kawano K, Kitano S. Immunoactivative role of indoleamine 2,3-dioxygenase in human hepatocellular carcinoma. J Gastroenterol Hepatol 2004; 19: 319–326.

    Article  CAS  PubMed  Google Scholar 

  93. Pan K, Wang H, Chen MS, Zhang HK, Weng DS, Zhou J et al. Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma. J Cancer Res Clin Oncol 2008; 134: 1247–1253.

    Article  CAS  PubMed  Google Scholar 

  94. Piras F, Colombari R, Minerba L, Murtas D, Floris C, Maxia C et al. The predictive value of CD8, CD4, CD68, and human leukocyte antigen-D-related cells in the prognosis of cutaneous malignant melanoma with vertical growth phase. Cancer 2005; 104: 1246–1254.

    Article  CAS  PubMed  Google Scholar 

  95. Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G et al. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival. Clin Cancer Res 2017; 23: 6650–6660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Röhrig UF, Majjigapu SR, Vogel P, Zoete V, Michielin O. Challenges in the Discovery of Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. J Med Chem 2015; 58: 9421–9437.

    Article  PubMed  CAS  Google Scholar 

  97. Iversen TZ, Engell-Noerregaard L, Ellebaek E, Andersen R, Larsen SK, Bjoern J et al. Long-lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from indoleamine 2,3 dioxygenase. Clin Cancer Res 2014; 20: 221–232.

    Article  CAS  PubMed  Google Scholar 

  98. Soliman HH, Jackson E, Neuger T, Dees CE, Harvey DR, Han H et al. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget 2014; 5: 8136–8146.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Perez RP, Riese MJ, Lewis KD, Saleh MN, Daud A, Berlin J et al. Epacadostat plus nivolumab in patients with advanced solid tumors: preliminary phase I/II results of ECHO-204. J Clin Oncol 2017; 35: 3003–3003.

    Article  Google Scholar 

  100. Siu LL, Gelmon K, Chu Q, Pachynski R, Alese O, Basciano P et al. Abstract CT116: BMS-986205, an optimized indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor, is well tolerated with potent pharmacodynamic (PD) activity, alone and in combination with nivolumab (nivo) in advanced cancers in a phase 1/2a trial. Cancer Res 2017; 77: CT116–CT116.

    Google Scholar 

  101. Soliman HH, Jackson E, Neuger T, Dees EC, Harvey RD, Han H et al. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget 2014; 5: 8136–8146.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Soliman HH, Minton SE, Han HS, Ismail-Khan R, Neuger A, Khambati F et al. A phase I study of indoximod in patients with advanced malignancies. Oncotarget 2016; 7: 22928–22938.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Spira AI, Hamid O, Bauer TM, Borges VF, Wasser JS, Smith DC et al. Efficacy/safety of epacadostat plus pembrolizumab in triple-negative breast cancer and ovarian cancer: Phase I/II ECHO-202 study. J Clin Oncol 2017; 35: 1103–1103.

    Article  Google Scholar 

  104. Gangadhar TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Luke JJ et al. Preliminary results from a phase I/II study of epacadostat (incb024360) in combination with pembrolizumab in patients with selected advanced cancers. J Immunother Cancer 2015; 3: O7.

    Article  PubMed Central  Google Scholar 

  105. Tang T, Gill HS, Ogasawara A, Tinianow JN, Vanderbilt AN, Williams SP et al. Preparation and evaluation of L- and D-5-[18F]fluorotryptophan as PET imaging probes for indoleamine and tryptophan 2,3-dioxygenases. Nucl Med Biol 2017; 51: 10–17.

    Article  CAS  PubMed  Google Scholar 

  106. Xin Y, Cai H. Improved radiosynthesis and biological evaluations of L- and D-1-[18F]fluoroethyl-tryptophan for pet imaging of ido-mediated kynurenine pathway of tryptophan metabolism. Mol Imaging Biol 2017; 19: 589–598.

    Article  CAS  PubMed  Google Scholar 

  107. Lob S, Konigsrainer A, Schafer R, Rammensee HG, Opelz G, Terness P. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 2008; 111: 2152–2154.

    Article  CAS  PubMed  Google Scholar 

  108. Löb S, Königsrainer A, Zieker D, Brücher BDM, Rammensee H-G, Opelz G et al. IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother 2009; 58: 153–157.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R00 NS082381 (DAW) and R01 NS097851-01 (DAW), the Cancer Research Institute—Clinic and Laboratory Integration Program (DAW), the Robert H. Lurie Comprehensive Cancer Center—Zell Scholar Program of the Zell Family Foundation Gift (DAW) and the Northwestern Brain Tumor Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek A Wainwright.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, L., Ladomersky, E., Lenzen, A. et al. IDO1 in cancer: a Gemini of immune checkpoints. Cell Mol Immunol 15, 447–457 (2018). https://doi.org/10.1038/cmi.2017.143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.143

This article is cited by

Search

Quick links