Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Carbohydrates, glycemic index and diabetes mellitus

Effects of different fractions of whey protein on postprandial lipid and hormone responses in type 2 diabetes

Abstract

Background/Objectives:

Exacerbated postprandial lipid responses are associated with an increased cardiovascular risk. Dietary proteins influence postprandial lipemia differently, and whey protein has a preferential lipid-lowering effect. We compared the effects of different whey protein fractions on postprandial lipid and hormone responses added to a high-fat meal in type 2 diabetic subjects.

Subjects/Methods:

A total of 12 type 2 diabetic subjects ingested four isocaloric test meals in randomized order. The test meals contained 100 g of butter and 45 g of carbohydrate in combination with 45 g of whey isolate (iso-meal), whey hydrolysate (hydro-meal), α-lactalbumin enhanced whey (lac-meal) or caseinoglycomacropeptide enhanced whey (CGMP-meal). Plasma concentrations of triglyceride, retinyl palmitate, free fatty acid, insulin, glucose, glucagon, glucagon-like peptide 1 and glucose-dependent insulinotropic peptide were measured before and at regular intervals until 8-h postprandially.

Results:

We found no statistical significant differences between meals on our primary variable triglyceride. The retinyl palmitate response was higher after the hydro-meal than after the iso- and lac-meal in the chylomicron-rich fraction (P=0.008) while no significant differences were found in the chylomicron-poor fraction. The hydro- and iso-meal produced a higher insulin response compared with the lac- and CGMP-meal (P<0.001). Otherwise no significant differences in the hormone responses were found in the incremental area under the curve over the 480-min period.

Conclusions:

A supplement of four different whey protein fractions to a fat-rich meal had similar effects on postprandial triglyceride responses in type 2 diabetic subjects. Whey isolate and whey hydrolysate caused a higher insulin response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR et al Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998; 316: 823–828.

    Article  CAS  Google Scholar 

  2. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M . Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339: 229–234.

    Article  CAS  Google Scholar 

  3. Taskinen MR . Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 2003; 46: 733–749.

    Article  Google Scholar 

  4. Rivellese AA, De NC, Di ML, Patti L, Iovine C, Coppola S et al Exogenous and endogenous postprandial lipid abnormalities in type 2 diabetic patients with optimal blood glucose control and optimal fasting triglyceride levels. J Clin Endocrinol Metab 2004; 89: 2153–2159.

    Article  CAS  Google Scholar 

  5. Karpe F, Steiner G, Uffelman K, Olivecrona T, Hamsten A . Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 1994; 106: 83–97.

    Article  CAS  Google Scholar 

  6. Patsch JR, Miesenbock G, Hopferwieser T, Muhlberger V, Knapp E, Dunn JK et al Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 1992; 12: 1336–1345.

    Article  CAS  Google Scholar 

  7. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM . Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 2007; 298: 309–316.

    Article  CAS  Google Scholar 

  8. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A . Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007; 298: 299–308.

    Article  CAS  Google Scholar 

  9. Dubois C, Beaumier G, Juhel C, Armand M, Portugal H, Pauli AM et al Effects of graded amounts (0–50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. Am J Clin Nutr 1998; 67: 31–38.

    Article  CAS  Google Scholar 

  10. Thomsen C, Rasmussen O, Lousen T, Holst JJ, Fenselau S, Schrezenmeir J et al Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 1999; 69: 1135–1143.

    Article  CAS  Google Scholar 

  11. Thomsen C, Storm H, Holst JJ, Hermansen K . Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. Am J Clin Nutr 2003; 77: 605–611.

    Article  CAS  Google Scholar 

  12. Lairon D, Play B, Jourdheuil-Rahmani D . Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism. J Nutr Biochem 2007; 18: 217–227.

    Article  CAS  Google Scholar 

  13. Graf S, Egert S, Heer M . Effects of whey protein supplements on metabolism: evidence from human intervention studies. Curr Opin Clin Nutr Metab Care 2011; 14: 569–580.

    Article  CAS  Google Scholar 

  14. Brader L, Holm L, Mortensen L, Thomsen C, Astrup A, Holst JJ et al Acute effects of casein on postprandial lipemia and incretin responses in type 2 diabetic subjects. Nutr Metab Cardiovasc Dis 2010; 20: 101–109.

    Article  CAS  Google Scholar 

  15. Westphal S, Kastner S, Taneva E, Leodolter A, Dierkes J, Luley C . Postprandial lipid and carbohydrate responses after the ingestion of a casein-enriched mixed meal. Am J Clin Nutr 2004; 80: 284–290.

    Article  CAS  Google Scholar 

  16. Mortensen LS, Hartvigsen ML, Brader LJ, Astrup A, Schrezenmeir J, Holst JJ et al Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: comparison of whey, casein, gluten, and cod protein. Am J Clin Nutr 2009; 90: 41–48.

    Article  CAS  Google Scholar 

  17. Pal S, Ellis V, Ho S . Acute effects of whey protein isolate on cardiovascular risk factors in overweight, post-menopausal women. Atherosclerosis 2010; 212: 339–344.

    Article  CAS  Google Scholar 

  18. Nilsson M, Stenberg M, Frid AH, Holst JJ, Bjorck IM . Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr 2004; 80: 1246–1253.

    Article  CAS  Google Scholar 

  19. Power O, Hallihan A, Jakeman P . Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids 2009; 37: 333–339.

    Article  CAS  Google Scholar 

  20. Verges B . New insight into the pathophysiology of lipid abnormalities in type 2 diabetes. Diabetes Metab 2005; 31: 429–439.

    Article  CAS  Google Scholar 

  21. Schwartz EA, Koska J, Mullin MP, Syoufi I, Schwenke DC, Reaven PD . Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus. Atherosclerosis 2010; 212: 217–222.

    Article  CAS  Google Scholar 

  22. Krissansen GW . Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr 2007; 26: 713S–723S.

    Article  CAS  Google Scholar 

  23. Blomhoff R, Green MH, Green JB, Berg T, Norum KR . Vitamin A metabolism: new perspectives on absorption, transport, and storage. Physiol Rev 1991; 71: 951–990.

    Article  CAS  Google Scholar 

  24. Andersen L, Dinesen B, Jorgensen PN, Poulsen F, Roder ME . Enzyme immunoassay for intact human insulin in serum or plasma. Clin Chem 1993; 39: 578–582.

    CAS  PubMed  Google Scholar 

  25. Krarup T, Madsbad S, Moody AJ, Regeur L, Faber OK, Holst JJ et al Diminished immunoreactive gastric inhibitory polypeptide response to a meal in newly diagnosed type I (insulin-dependent) diabetics. J Clin Endocrinol Metab 1983; 56: 1306–1312.

    Article  CAS  Google Scholar 

  26. Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ . Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 1994; 43: 535–539.

    Article  CAS  Google Scholar 

  27. Holst JJ . Evidence that enteroglucagon (II) is identical with the C-terminal sequence (residues 33-69) of glicentin. Biochem J 1982; 207: 381–388.

    Article  CAS  Google Scholar 

  28. Schrezenmeir J, Weber P, Probst R, Biesalski HK, Luley C, Prellwitz W et al Postprandial pattern of triglyceride-rich lipoprotein in normal-weight humans after an oral lipid load: exaggerated triglycerides and altered insulin response in some subjects. Ann Nutr Metab 1992; 36: 186–196.

    Article  CAS  Google Scholar 

  29. Carstensen M, Thomsen C, Hermansen K . Incremental area under response curve more accurately describes the triglyceride response to an oral fat load in both healthy and type 2 diabetic subjects. Metabolism 2003; 52: 1034–1037.

    Article  CAS  Google Scholar 

  30. Matthews JN, Altman DG, Campbell MJ, Royston P . Analysis of serial measurements in medical research. BMJ 1990; 300: 230–235.

    Article  CAS  Google Scholar 

  31. Pal S, Ellis V . The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity 2010; 18: 1354–1359.

    Article  CAS  Google Scholar 

  32. Ballard KD, Bruno RS, Seip RL, Quann EE, Volk BM, Freidenreich DJ et al Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial. Nutr J 2009; 8: 34.

    Article  Google Scholar 

  33. Karpe F, Bell M, Bjorkegren J, Hamsten A . Quantification of postprandial triglyceride-rich lipoproteins in healthy men by retinyl ester labeling and simultaneous measurement of apolipoproteins B-48 and B-100. Arterioscler Thromb Vasc Biol 1995; 15: 199–207.

    Article  CAS  Google Scholar 

  34. Lithell H, Boberg J, Hellsing K, Lundqvist G, Vessby B . Lipoprotein-lipase activity in human skeletal muscle and adipose tissue in the fasting and the fed states. Atherosclerosis 1978; 30: 89–94.

    Article  CAS  Google Scholar 

  35. Eckel RH . Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 1989; 320: 1060–1068.

    Article  CAS  Google Scholar 

  36. Manders RJ, Wagenmakers AJ, Koopman R, Zorenc AH, Menheere PP, Schaper NC et al Co-ingestion of a protein hydrolysate and amino acid mixture with carbohydrate improves plasma glucose disposal in patients with type 2 diabetes. Am J Clin Nutr 2005; 82: 76–83.

    Article  CAS  Google Scholar 

  37. Holst JJ, Orskov C . Incretin hormones—an update. Scand J Clin Lab Invest Suppl 2001; 234: 75–85.

    CAS  Google Scholar 

  38. Calbet JA, Holst JJ . Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur J Nutr 2004; 43: 127–139.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tove Skrumsager and Lene Trudsø for excellent technical assistance. This work was carried out as a part of the research programme of the Danish Obesity Research Centre (DanORC, http://www.danorc.dk) and was supported by Nordic Centre of Excellence (NCoE) programme (Systems biology in controlled dietary interventions and cohort studies—SYSDIET, P no. 070014) and supported by a grant from Arla Foods Ingredients amba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L S Mortensen.

Ethics declarations

Competing interests

Arne Astrup is a scientific member of Global Dairy Platform (Chicago) and receives speaker’s honoraria and research funding from the Danish Dairy Foundation, Arla and Danish Meat Association. Vivian K Jensen is employed by Arla Foods Ingredients amba. The rest of the authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortensen, L., Holmer-Jensen, J., Hartvigsen, M. et al. Effects of different fractions of whey protein on postprandial lipid and hormone responses in type 2 diabetes. Eur J Clin Nutr 66, 799–805 (2012). https://doi.org/10.1038/ejcn.2012.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2012.48

Keywords

This article is cited by

Search

Quick links