Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Metabolic syndrome, diabetes mellitus, cardiovascular and neurodegenerative diseases

Is glycaemic index (GI) a valid measure of carbohydrate quality?

Abstract

Recent criticisms of the glycaemic index (GI) focus on its validity with assertions that GI methodology is not valid, GI values are inaccurate and imprecise, GI does not predict what foods are healthy and that whole grain and fibre are better markers of carbohydrate quality than GI. None of the critics provide sound reasons for rejecting GI because some of their arguments are based on flagrant errors in understanding and interpretation while others are not supported by current data or are inconsistent with other nutritional recommendations. This paper addresses current criticisms of GI and outlines reasons why GI is valid: (1) GI methodology is accurate and precise enough for practical use; (2) GI is a property of foods; and (3) GI is biologically meaningful and relevant to virtually everyone. Current dietary guidelines recommend increased consumption of whole grains and dietary fibre but do not mention GI. However, this is illogical because the evidence that GI affects health outcomes is at least as good or better than that for whole grains and fibre. GI is a novel concept from a regulatory point of view and a number of problems need to be addressed to successfully translate GI knowledge into practice. The problems are not insurmountable but no progress can be made until bias and misunderstanding about GI can be overcome and there is better agreement about what is the actual state of knowledge on GI so that the real issues can be identified and addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Jenkins DJA, Wolever TMS, Taylor RH, Barker HM, Fielden H, Baldwin JM et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 1981; 34: 362–366.

    Article  CAS  PubMed  Google Scholar 

  2. Coulston AM, Reaven GM . Much ado about (almost) nothing. Diabetes Care 1997; 20: 241–243.

    Article  CAS  PubMed  Google Scholar 

  3. Aziz A . The glycemic index: methodological aspects related to the interpretation of health effects and to regulatory labeling. J AOAC Int 2009; 92: 879–887.

    CAS  PubMed  Google Scholar 

  4. DeVries JW . Glycemic index: the analytical perspective. Cereal Foods World 2007; 52: 45–49.

    CAS  Google Scholar 

  5. Wolever TMS . The glycemic index: flogging a dead horse? Diabetes Care 1997; 20: 452–456.

    Article  CAS  PubMed  Google Scholar 

  6. Sykes JB (ed) The Concise Oxford Dictionary 7th Edition Clarendon Press: Oxford, UK. p 1186, 1982.

    Google Scholar 

  7. Brand-Miller J, Hayne S, Petocz P, Colagiuri S . Low-glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care 2003; 26: 2261–2267.

    Article  PubMed  Google Scholar 

  8. Jenkins DJA, Kendall CWC, McKeown-Eyssen G, Josse RG, Silverberg J, Booth GL et al. Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes. A randomized trial. JAMA 2008; 300: 2742–2753.

    Article  CAS  PubMed  Google Scholar 

  9. Salmeron J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997; 20: 545–550.

    Article  CAS  PubMed  Google Scholar 

  10. Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC . Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 1997; 277: 472–477.

    Article  CAS  PubMed  Google Scholar 

  11. Meyer KA, Kushi LH, Jacobs DR, Slavin J, Sellers TA, Folsom AR . Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 2000; 71: 921–930.

    Article  CAS  PubMed  Google Scholar 

  12. Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB . Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 2004; 80: 348–356.

    Article  CAS  PubMed  Google Scholar 

  13. Hodge AM, English DR, O'Dea K, Giles GG . Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004; 27: 2701–2706.

    Article  PubMed  Google Scholar 

  14. Zhang C, Liu S, Solomon CG, Hu FB . Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 2006; 29: 2223–2230.

    Article  CAS  PubMed  Google Scholar 

  15. Villegas R, Liu S, Gao Y-T, Yang G, Li H, Zheng W et al. Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch Int Med 2007; 167: 2310–2316.

    Article  Google Scholar 

  16. Krishnan S, Rosenberg L, Singer M, Hu FB, Djousse L, Cupples A et al. Glycemic index, glycemic load, and cereal fiber intake and risk of type 2 diabetes in US black women. Arch Int Med 2007; 167: 2304–2309.

    Article  Google Scholar 

  17. World Health Organization. Definition of health. URL https://apps.who.int/aboutwho/en/definition.html accessed 9 December 2011.

  18. O'Reilly J, Wong SHS, Chen Y . Glycaemic index, glycaemic load, and exercise performance. Sport Med 2010; 40: 27–39.

    Article  Google Scholar 

  19. Benton D, Ruffin M-P, Lassel T, Nabb S, Messaoudi M, Vinoy S et al. The delivery rate of dietary carbohydrates affects cognitive performance in both rats and humans. Psychopharmacology (Berl) 2003; 166: 86–90.

    Article  CAS  Google Scholar 

  20. Micha R, Rogers PJ, Nelson M . The glycaemic potency of breakfast and cognitive function in school children. Eur J Clin Nutr 2010; 64: 948–957.

    Article  CAS  PubMed  Google Scholar 

  21. Smith RN, Mann NJ, Braue A, Makelainen H, Varigos GA . A low-glycemic-load diet improves symptoms in acne vulgaris patients: a randomized controlled trial. Am J Clin Nutr 2007; 86: 107–115.

    Article  CAS  PubMed  Google Scholar 

  22. Berra B, Rizzo AM . Glycemic index, glycemic load, wellness and beauty: the state of the art. Clin Dermatol 2009; 27: 230–235.

    Article  PubMed  Google Scholar 

  23. Clapp JF . Maternal carbohydrate intake and pregnancy outcome. Proc Nutr Soc 2002; 61: 45–50.

    Article  PubMed  Google Scholar 

  24. Clapp JF, Lopez B . Low- versus high-glycemic index diets in women: effects on caloric requirements, substrate utilization, and insulin sensitivity. Metabol Synd Rel Disord 2007; 5: 231–242.

    Article  CAS  Google Scholar 

  25. Moses RG, Luebcke M, Davis WS, Coleman KJ, Tapsell LC, Petocz P et al. Effect of a low-glycemic-index diet during pregnancy on obstetric outcomes. Am J Clin Nutr 2006; 84: 807–812.

    Article  CAS  PubMed  Google Scholar 

  26. Rhodes ET, Pawlak DB, Takoudes TC, Ebbeling CB, Feldman HA, Lovesky MM et al. Effects of a low-glycemic load diet in overweight and obese pregnant women: a pilot randomized controlled trial. Am J Clin Nutr 2010; 92: 1306–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chavarro JE, Rich-Edwards JW, Rosner BA, Willet WC . A prospective study of dietary carbohydrate quality in relation to risk of ovulatory infertility. Eur J Clin Nutr 2009; 63: 78–86.

    Article  CAS  PubMed  Google Scholar 

  28. Marsh KA, Steinbeck KS, Atkinson FS, Petocz P, Brand-Miller JC . Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. Am J Clin Nutr 2010; 92: 83–92.

    Article  CAS  PubMed  Google Scholar 

  29. Chiu CJ, Liu S, Willett WC, Wolever TM, Brand-Miller JC, Barclay AW et al. Informing food choices and health outcomes by use of the dietary glycemic index. Nutr Rev 2011; 69: 231–242.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med 2010; 363: 2102–2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barclay AW, Petocz P, McMillan-Price J, Flood VM, Prvan T, Mitchell P et al. Glycemic load and chronic disease risk-a meta-analysis of observational studies. Am J Clin Nutr 2008; 87: 627–637.

    Article  CAS  PubMed  Google Scholar 

  32. Mursu J, Virtanen JK, Rissanen TH, Tuomainen T-P, Mykanen I, Laukkanen JA et al. Glycemic index, glycemic load, and the risk of acute myocardial infarction in Finnish men: the Kuopio Ishcaemic Heart Disease Risk Factor Study. Nutr Metab Cardiovasc Dis 2011; 21: 144–149.

    Article  CAS  PubMed  Google Scholar 

  33. Oh K, Hu FB, Cho E, Rexrode KM, Stampfer MJ, Manson JE et al. Carbohydrate intake, glycemic index, glycemic load, and dietary fiber in relation to risk of stroke in women. Am J Epidemiol 2005; 161: 161–169.

    Article  PubMed  Google Scholar 

  34. Oba S, Nagata C, Nakamura K, Fujii K, Kawachi T, Takatsuka N et al. Dietary glycemic index, glycemic load, and intake of carbohydrate and rice in relation to risk of mortality from stroke and its subtypes in Japanese men and women. Metabolism 2010; 59: 1574–1582.

    Article  CAS  PubMed  Google Scholar 

  35. McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PWF, Jacques PF . Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 2004; 27: 538–546.

    Article  PubMed  Google Scholar 

  36. Silva FM, Steemburgo T, de Mello VD, Tonding SF, Gross JL, Azevedo MJ . High dietary glycemic index and low fiber content are associated with metabolic syndrome in patients with type 2 diabetes. J Am Coll Nutr 2011; 30: 141–148.

    Article  PubMed  Google Scholar 

  37. Dong JY, Qin LQ . Dietary glycemic index, glycemic load, and risk of breast cancer: meta-analysis of prospective cohort studies. Breast Cancer Res Treat 2011; 126: 287–294.

    Article  CAS  PubMed  Google Scholar 

  38. Shikany JM, Flood AP, Kitahara CM, Hsing AW, Mayer TE, Willcox BJ et al. Dietary carbohydrate, glycemic index, glycemic load, and risk of prostate cancer in the Prosate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) cohort. Cancer Causes Cont 2011; 22: 995–1002.

    Article  Google Scholar 

  39. Radin RG, Palmer JR, Rodenberg L, Kumanyika SK, Wise LA . Dietary glycemic index and load in relation to risk of uterine leiomyomata in the Black Women’sHealth Study. Am J Clin Nutr 2010; 91: 1281–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mwamburi DM, Liebson E, Folstein M, Bungay K, Tucker KL, Qiu WQ . Depression and glycemic intake in the homebound elderly. J Affect Dis 2011; 132: 94–98.

    Article  CAS  PubMed  Google Scholar 

  41. Murakami K, Myake Y, Sasaki S, Tanaka K, Fukushima W, Kiyohara C et al. Dietary glycemic index is inversely associated with the risk of Parkinson's disease: a case-control study in Japan. Nutrition 2010; 26: 515–521.

    Article  CAS  PubMed  Google Scholar 

  42. Gopinath B, Harris DC, Flood VM, Burlutsky G, Brand-Miller JC, Mitchell P . Carbohydrate nutrition is associated with the 5-year incidence of chronic kidney disease. J Nutr 2011; 141: 433–439.

    Article  CAS  PubMed  Google Scholar 

  43. Gögebakan Ö, Kohl A, Osterhoff MA, van Baak MA, Jebb SA, Papadaki A et al. Effects of weight loss and long-term weight maintenance with diets varying in protein content and glycemic index on cardiovascular risk factors. The diet, obesity and genes (DiOGenes) study: a randomized controlled trial. Circulation 2011; 124: 2829–2838.

    Article  CAS  PubMed  Google Scholar 

  44. Tsai CJ, Leitzmann MF, Willett WC, Giovanucci EL . Dietary carbohydrates and glycaemic load and the incidence of symptomatic gall stone disease in men. Gut 2005; 54: 823–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsai CJ, Leitzmann MF, Willett WC, Giovanucci EL . Glycemic load, glycemic index, and carbohydrate intake in relation to risk of cholecystectomy in women. Gastroenterology 2005; 129: 105–112.

    Article  PubMed  Google Scholar 

  46. Yazdy MM, Liu S, Mitchell AA, Werler MM . Maternal dietary glycemic intake and the risk of neural tube defects. Am J Epidemiol 2010; 171: 407–414.

    Article  PubMed  Google Scholar 

  47. Buyken AE, Flood V, Empson M, Rochtchina B, Barclay AW, Brand-Miller J et al. Carbohydrate nutrition and inflammatory disease mortality in older adults. Am J Clin Nutr 2010; 92: 634–643.

    Article  CAS  PubMed  Google Scholar 

  48. Franz MJ . In defense of the American Diabetes Association’s recommendations on the glycemic index. Nutr Today 1999; 34: 78–81.

    Article  Google Scholar 

  49. Pi-Sunyer FX . Glycemic index and disease. Am J Clin Nutr 2002; 76: 290S–298S.

    Article  CAS  PubMed  Google Scholar 

  50. Anderson GH . The glycemic index: clinical and public health significance. Carbohydrate News (publication of the Canadian Sugar Institute) 2008, URL http://www.sugar.ca/english/healthprofessionals/carboIssue13.cfm (accessed 9 December 2011).

  51. Jones JM . Glycemic index: the state of the science, part 1: the measure and its variability. Nutr Today 2012; 47: 207–213.

    Article  Google Scholar 

  52. Slavin J . Basic qualities of carbohydrates and GI/GL concept. In: Oral session at EB2010, Anaheim, CA; Controversy: Are we ready to adapt glycemic index as an eating guide?.

  53. International Standards Organization. ISO 26642:2010. Food products - Determination of the glycaemic index (GI) and recommendation for food classification. Published 2010-09-23. (available at http://www.iso.org/iso/catalogue_detail.htm?csnumber=43633 accessed 4 February 2013.

  54. Wolever TMS, Jenkins DJA, Vuksan V, Josse RG, Wong GS, Jenkins AL . Glycemic index of foods in individual subjects. Diabetes Care 1990; 13: 126–132.

    Article  CAS  PubMed  Google Scholar 

  55. Wolever TMS, Jenkins AL, Vuksan V, Campbell J . The glycaemic index values of foods containing fructose are affected by metabolic differences between subjects. Eur J Clin Nutr 2009; 63: 1106–1114.

    Article  CAS  PubMed  Google Scholar 

  56. Lan-Pidhainy X, Wolever TMS . Are the glycemic and insulinemic index values of carbohydrate foods similar in healthy control, hyperinsulinemic and type 2 diabetic patients? Eur J Clin Nutr 2011; 65: 727–734.

    Article  CAS  PubMed  Google Scholar 

  57. Wolever TMS . Glycemic index: the measure and its variability: the true state of the science. Nutr Today 2012; 47: 214–221.

    Article  Google Scholar 

  58. Collier G, McLean A, O’Dea K . Effect of co-ingestion of fat on the metabolic responses to slowly and rapidly absorbed carbohydrates. Diabetologia 1984; 26: 50–54.

    Article  CAS  PubMed  Google Scholar 

  59. Bornet FRJ, Costagliola D, Rizkalla SW, Blayo A, Fontvieille A-M, Haardt M-J et al. Insulinemic and glycemic indexes of six starch-rich foods taken alone and in a mixed meal by type 2 diabetics. Am J Clin Nutr 1987; 45: 588–595.

    Article  CAS  PubMed  Google Scholar 

  60. Henry CJK, Lightowler HJ, Kendall FL, Storey M . The impact of the addition of toppings/fillings on the glycaemic response to commonly consumed carbohydrate foods. Eur J Clin Nutr 2006; 60: 763–769.

    Article  CAS  PubMed  Google Scholar 

  61. Collier GR, Wolever TMS, Wong GS, Josse RG . Prediction of glycemic response to mixed meals in non-insulin dependent diabetic subjects. Am J Clin Nutr 1986; 44: 349–352.

    Article  CAS  PubMed  Google Scholar 

  62. Wolever TMS, Yang M, Zeng XY, Atkinson F, Brand-Miller JC . Food glycemic index, as given in GI tables, is a significant determinant of glycemic responses elicited by composite breakfasts. Am J Clin Nutr 2006; 83: 1306–1312.

    Article  CAS  PubMed  Google Scholar 

  63. Wolever TMS, Jenkins DJA . The use of the glycemic index in predicting the blood glucose response to mixed meals. Am J Clin Nutr 1986; 43: 167–172.

    Article  CAS  PubMed  Google Scholar 

  64. Flint A, Møller BK, Raben A, Pedersen D, Tetens I, Holst JJ et al. The use of glycaemic index tables to predict glycaemic index of composite breakfast meals. Br J Nutr 2004; 91: 979–989.

    Article  CAS  PubMed  Google Scholar 

  65. Dodd H, Williams S, Brown R, Venn B . Calculating meal glycemic index by using measured and published food values compared with directly measured meal glycemic index. Am J Clin Nutr 2011; 94: 992–996.

    Article  CAS  PubMed  Google Scholar 

  66. Hätönen KA, Virtamo J, Eriksson JG, Sinkko HK, Sundvall JE, Valsta LM . Protein and fat modify the glycaemic and insulinaemic responses to a mashed potato-based meal. Br J Nutr 2011; 106: 248–253.

    Article  CAS  PubMed  Google Scholar 

  67. Moghaddam E, Vogt JA, Wolever TMS . The effects of fat and protein on glycemic responses in non-diabetic humans vary with waist-circumference, fasting plasma insulin and dietary fiber intake. J Nutr 2006; 136: 2506–2511.

    Article  CAS  PubMed  Google Scholar 

  68. Lan-Pidhainy X, Wolever TMS . The hypoglycemic effect of fat and protein is not attenuated by insulin resistance. Am J Clin Nutr 2010; 91: 98–105.

    Article  CAS  PubMed  Google Scholar 

  69. Wolever TMS, Bhaskaran K . Use of glycemic index to estimate mixed-meal glycemic response. Am J Clin Nutr 2012; 95: 256–257.

    Article  CAS  PubMed  Google Scholar 

  70. Wolever TMS . The Glycaemic Index: A Physiological Classification of Dietary Carbohydrate. CABI Publishing: Wallingford, UK. pp 66, 2006.

    Book  Google Scholar 

  71. Flood A, Subar AF, Hull SG, Zimmerman TP, Jenkins DJ, Schatzkin A . Methodology for adding glycemic load values to the National Cancer Institute Diet History Questionnaire database. J Am Diet Assoc 2006; 106: 393–402.

    Article  PubMed  Google Scholar 

  72. Similä ME, Valsta LM, Virtanen JM, Hätönen KA, Virtamo J . Glyaemic index database for the epidemiological Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. BrJ Nutr 2009; 101: 1400–1405.

    Article  CAS  Google Scholar 

  73. Louie JC, Flood V, Turner N, Everingham C, Gwynn J . Methodology for adding glycemic index values to 24-hour recalls. Nutrition 2011; 27: 59–64.

    Article  PubMed  Google Scholar 

  74. Food and Agriculture Organization of the United Nations. FAO Food and Nutrition Paper 66. Carbohydrates in Human Nutrition. FAO: Rome, 1998.

  75. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G et al. Glycaemic index methodology. Nutr Res Rev 2005; 18: 145–171.

    Article  CAS  PubMed  Google Scholar 

  76. Australian Standards Organization. Glycemic Index of Foods AS4694-2007http://infostore.saiglobal.com/store/Details.aspx?DocN=AS0733779662AT accessed 2 December 2009.

  77. Wolever TMS, Vorster HH, Björk I, Brand-Miller J, Brighenti F, Mann JI et al. Determination of the glycaemic index of foods: interlaboratory study. Eur J Clin Nutr 2003; 57: 475–482.

    Article  CAS  PubMed  Google Scholar 

  78. Wolever TMS, Brand-Miller JC, Abernethy J, Astrup A, Atkinson F, Axelsen M et al. Measuring the glycemic index of foods: interlaboratory study. Am J Clin Nutr 2008; 87 (suppl), S247–S257.

    Article  Google Scholar 

  79. Foster-Powell K, Brand Miller J . International tables of glycemic index. Am J Clin Nutr 1995; 62: S871–S893.

    Article  Google Scholar 

  80. Foster-Powell K, Holt SH, Brand-Miller JC . International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 2002; 76: 5–56.

    Article  CAS  PubMed  Google Scholar 

  81. Atkinson FS, Foster-Powell K, Brand-Miller JC . International table of glycemic index and glycemic load values: 2008. Diabetes Care 2008; 31: 2281–2283.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wolever TMS The Glycaemic Index: A Physiological Classification of Dietary Carbohydrate. CABI Publishing: Wallingford, UK. pp 120–123, 2006.

    Book  Google Scholar 

  83. van Bakel MM, Slimani N, Feskens EJ, Du H, Beulens JW, van der Schouw YT et al. Methodological challenges in the application of the glycemic index in epidemiological studies using data from the European Prospective Investigation into Cancer and Nutrition. J Nutr 2009; 139: 568–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wolever TMS, Nuttall FQ, Lee R, Wong GS, Josse RG, Csima A et al. Prediction of the relative blood glucose response of mixed meals using the white bread glycemic index. Diabetes Care 1985; 8: 418–428.

    Article  CAS  PubMed  Google Scholar 

  85. Wolever TMS, Jenkins DJA, Josse RG, Wong GS, Lee R . The glycemic index: similarity of values derived in insulin-dependent and non-insulin-dependent diabetic patients. J Am Col Nutr 1987; 6: 295–305.

    Article  CAS  Google Scholar 

  86. Wolever TMS, Jenkins DJA, Jenkins AL, Josse RG . The glycemic index: methodology and clinical implications. Am J Clin Nutr 1991; 54: 846–854.

    Article  CAS  PubMed  Google Scholar 

  87. Wolever TMS, Ip B, Moghaddam E . Measuring glycaemic responses: duplicate fasting samples or duplicate measures of one fasting sample? Br J Nutr 2006; 96: 799–802.

    Article  CAS  PubMed  Google Scholar 

  88. Aziz A Health claims related to postprandial glycaemic control: Health Canada’s approach. Presented on 23 August, 2012 to the Program of Food Safety, Nutrition and Regulatory Affairs, University of Toronto.

  89. Wolever TMS, Leung J, Vuksan V, Jenkins AL . Day-to-day variation in glycemic response elicited by white bread is not related to variation in satiety in humans. Appetite 2009; 52: 654–658.

    Article  CAS  PubMed  Google Scholar 

  90. Clips on Sugars – For Up-to-Date Information on Sugars in Healthy Eating: Understanding the Glycemic Index. Canadian Sugar Institute: Educators and Students site http://www.sugar.ca/english/pdf/healthprofessionals/Clip9.pdf. Updated 2008. Accessed 9 March 2012.

  91. The Glycemic Index. Canadian Diabetes Association: For Professionals Resources http://www.diabetes.ca/files/GlycemicIndex_09_Boehringer.pdf. Updated September 2009. Accessed 9 March 2012.

  92. Glycemic Index Foundation. Using the GI http://www.gisymbol.com.au/using.php Accessed 9 March 2012.

  93. The National Diabetes Services Scheme (NDSS) administered by Diabetes Australia. Talking diabetes: the glycemic index. Diabetes Australia: Diabetes Information Sheets site http://www.australiandiabetescouncil.com/Resources/PDFs/NDSS-Information-Sheets/GLYCEMIC-INDEX-2010.aspx Updated August 2010 Accessed 9 March 2012.

  94. Govindji A Food Facts: Glycaemic Index – is it just hype? The British Dietetic Association: Food Facts Sheets site http://www.bda.uk.com/foodfacts/GIDiet.pdf. Published April 2004. Accessed 9 March 2012.

  95. Slavin J . Basic qualities of carbohydrates and GI/GL concept. EB2010 Symposium: Are We Ready to Adopt Glycemic Index as an Eating Guide. Monday 26, Anaheim, CA, 2010.

    Google Scholar 

  96. Ludwig DS, Peterson KE, Gortmaker SL . Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet 2001; 357: 505–508.

    Article  CAS  PubMed  Google Scholar 

  97. Forshee RA, Anderson PA, Storey ML . Sugar-sweetened beverages and body mass index in children and adolescents: a meta-analysis. Am J Clin Nutr 2008; 87: 1662–1671.

    Article  CAS  PubMed  Google Scholar 

  98. Mattes RD, Shikany JM, Kaiser KA, Allison DB . Nutritively sweetened beverage consumption and body weight: a systematic review and meta-analysis of randomized experiments. Obes Rev 2011; 12: 346–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sievenpiper JL, de Souza RJ, Mirrahimi A, Yu ME, Carleton AJ, Beyene J et al. Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Ann Intern Med 2012; 156: 291–304.

    Article  PubMed  Google Scholar 

  100. Marriott BP, Cole N, Lee E . National estimates of dietary fructose intake increased from 1977–2004 in the United States. J Nutr 2009; 139: 1228S–1235S.

    Article  CAS  PubMed  Google Scholar 

  101. Wang DD, Sievenpiper JL, de Souza RJ, Chiavaroli L, Ha V, Cozma AI et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr 2012; 142: 916–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cozma AI, Sievenpiper JL, de Souza RJ, Chiavaroli L, Ha V, Wang DD et al. Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care 2012; 35: 1611–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ha V, Sievenpiper JL, de Souza RJ, Chiavaroli L, Wang DD, Cozma AI et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension 2012; 59: 787–795.

    Article  CAS  PubMed  Google Scholar 

  104. Sievenpiper JL, Carleton AJ, Chatha S, Jiang HY, de Souza RJ, Beyene J et al. Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and metaanalysis of experimental trials in humans. Diabetes Care 2009; 32: 1930–1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Livesey G, Taylor R . Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: meta-analyses and meta-regression models of intervention studies. Am J Clin Nutr 2008; 88: 1419–1437.

    CAS  PubMed  Google Scholar 

  106. Jenkins DJ, Srichaikul K, Kendall CW, Sievenpiper JL, Abdulnour S, Mirrahimi A et al. The relation of low glycaemic index fruit consumption to glycaemic control and risk factors for coronary heart disease in type 2 diabetes. Diabetologia 2011; 54: 271–279.

    Article  CAS  PubMed  Google Scholar 

  107. Sievenpiper JL, Chiavaroli L, de Souza R, Mirrahimi A, Cozma AI, Ha V et al. ‘Catalytic’ doses of fructose may benefit glycemic control without harming cardiometabolic risk factors: a small meta-analysis of randomized controlled feeding trials. Br J Nutr 2012; 108: 418–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mellen PB, Walsh TF, Herrington DM . Whole grain intake and cardiovascular disease: a meta-analysis. Nutr Metab Cardiovasc Dis 2008; 18: 283–290.

    Article  PubMed  Google Scholar 

  109. de Munter JS, Hu FB, Spiegelman D, Franz M, van Dam RM . Whole grain, bran and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med 2007; 4: e261.

    Article  PubMed  PubMed Central  Google Scholar 

  110. van de Vijver LPL, van den Bosch LMC, van den Brandt PA, Goldbohm RA . Whole-grain consumption, dietary fibre intake and body mass index in the Netherlands cohort study. Eur J Clin Nutr 2009; 63: 31–38.

    Article  CAS  PubMed  Google Scholar 

  111. O'Neil CE, Zanovec M, Cho SS, Nicklas TA . Whole grain and fiber consumption are associated with lower body weight measures in US adults National Health and Nutrition Examination Survey 1999–2004. Nutr Res 2010; 30: 815–822.

    Article  CAS  PubMed  Google Scholar 

  112. Tighe P, Duthie G, Vaughan N, Brittenden J, Simpson WG, Duthie S et al. Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial. Am J Clin Nutr 2010; 92: 733–740.

    Article  CAS  PubMed  Google Scholar 

  113. Brownlee IA, Moore C, Chatfield M, Richardson DP, Ashby P, Kuznesof SA et al. Markers of cardiovascular risk are not changed by increased whole-grain intake: the WHOLEheart study, a randomised, controlled dietary intervention. Br J Nutr 2010; 104: 125–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kristensen M, Toubro S, Jensen MG, Ross AB, Riboldi G, Petronio M et al. Whole grain compared with refined wheat decreases the percentage of body fat following a 12-week energy-restricted dietary intervention in postmenopausal women. J Nutr 2012; 142: 710–716.

    Article  CAS  PubMed  Google Scholar 

  115. Jebb SA, Lovegrove JA, Griffin BA, Frost GS, Moore CS, Chatfield MD et al. Effect of changing the amount and type of fat and carbohydrate on insulin sensitivity and cardiovascular risk: the RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) trial. Am J Clin Nutr 2010; 92: 748–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McMillan-Price J, Petocz P, Atkinson F, O’Neill K, Samman S, Steinbeck K et al. Comparison of 4 diets of varying glycemic load on weight loss and cardiovascular risk reduction in overweight and obese young adults. Arch Intern Med 2006; 166: 1466–1475.

    Article  PubMed  Google Scholar 

  117. Jenkins DJA, Wolever TMS, Leeds AR, Gassull MA, Dilawari JB, Goff DV et al. Dietary fibres, fibre analogues and glucose tolerance: importance of viscosity. Br Med J 1978; 1: 1392–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tosh SM, Brummer Y, Wolever TMS, Wood PJ . Glycemic response to oat bran muffins treated to vary molecular weight of β-glucan. Cereal Chem 2008; 85: 211–217.

    Article  CAS  Google Scholar 

  119. Lan-Pidhainy X, Brummer Y, Tosh SM, Wolever TM, Wood PJ . Reducing beta-glucan solubility in oat bran muffins by freeze-thaw treatment attenuates its hypoglycemic effect. Cereal Chem 2007; 84: 512–517.

    Article  CAS  Google Scholar 

  120. Wolever TMS, Jenkins DJA . Effect of dietary fiber and foods on carbohydrate metabolism. In: CRC Handbook of Dietary Fiber in Human Nutrition 2nd edn, (Ed.). Spiller GA) (CRC Press, Inc: Boca Raton, FL, USA, pp 111–152, 1992.

    Google Scholar 

  121. Wolever TMS, Tosh SM, Gibbs AL, Brand-Miller J, Duncan AM, Hart V et al. Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: a randomized clinical trial. Am J Clin Nutr 2010; 92: 723–732.

    Article  CAS  PubMed  Google Scholar 

  122. Jenkins DJA, Wolever TMS, Rao AV, Hegele RA, Mitchell S, Ransom T et al. Effect on serum lipids of very high fiber intakes in diets low in saturated fat and cholesterol. N Engl J Med 1993; 329: 21–26.

    Article  CAS  PubMed  Google Scholar 

  123. Post RE, Mainous AG, King DE, Simpson KN . Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis. J Am Board Fam Med 2012; 25: 16–23.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author’s research cited in this article was supported by grants to the author and scholarship support for the author’s graduate students from the Canadian Institutes for Health Research (CIHR Operating Grant MOP-79382), the Natural Sciences and Engineering Research Council of Canada (NSERC), Glycaemic Index Testing, Inc., and Glycemic Laboratories, Inc., and by grants to Glycemic Index Laboratories, Inc., from Agriculture and Agri-Food Canada, Ag West Bio, Inc., CreaNutrition AG, The Swedish Governmental Agency for Innovations Systems, Sydney University GI Research Services and ILSI Europe. Collaborators in the interlaboratory GI studies cited here also received funding from the multiple sources indicated on the respective publications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T M S Wolever.

Ethics declarations

Competing interests

I have an academic conflict of interest, in that I am co-inventor of the GI concept and want to see it accepted, however, neither my academic position nor salary depends on the success of the concept. I receive remuneration as President, Medical Director and Scientist of Glycemic Index Laboratories, Inc., a contract research organization; I receive remuneration as President and part owner of Glycaemic Index Testing, Inc., which provides services to GI Labs. I receive royalties as co-author of a number of popular books on GI under the general title of The Glucose Revolution, and consulting fees from Tamasek Polytechnic, Singapore for advice related to GI research. In the last 3 years, I have received payment as a member of the scientific advisory board of McCain Foods, Inc. Except for the preceding, I have no stocks or shares in any company that may gain or lose financially through publication (with the possible exception of companies included in mutual funds about which I am unaware and have no control over) and I have no ownership position in any patents or patent applications whose value may be affected by publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolever, T. Is glycaemic index (GI) a valid measure of carbohydrate quality?. Eur J Clin Nutr 67, 522–531 (2013). https://doi.org/10.1038/ejcn.2013.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2013.27

Keywords

This article is cited by

Search

Quick links