Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization

Abstract

Vascular endothelial growth factor (VEGF) is important in pathological neovascularization, which is a key component of diseases such as the wet form of age-related macular degeneration, proliferative diabetic retinopathy and cancer. One of the most potent naturally occurring VEGF binders is VEGF receptor Flt-1. We have generated two novel chimeric VEGF-binding molecules, sFLT01 and sFLT02, which consist of the second immunoglobulin (IgG)-like domain of Flt-1 fused either to a human IgG1 Fc or solely to the CH3 domain of IgG1 Fc through a polyglycine linker 9Gly. In vitro analysis showed that these novel molecules are high-affinity VEGF binders. We have demonstrated that adeno-associated virus serotype 2 (AAV2)-mediated intravitreal gene delivery of sFLT01 efficiently inhibits angiogenesis in the mouse oxygen-induced retinopathy model. There were no histological observations of toxicity upon persistent ocular expression of sFLT01 for up to 12 months following intravitreal AAV2-based delivery in the rodent eye. Our data suggest that AAV2-mediated intravitreal gene delivery of our novel molecules may be a safe and effective treatment for retinal neovascularization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ferrara N, Henzel WJ . Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161: 851–858.

    Article  CAS  Google Scholar 

  2. Kvanta A, Algvere PV, Berglin L, Seregard S . Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Visual Sci 1996; 37: 1929–1934.

    CAS  Google Scholar 

  3. Adamis AP, Miller JW, Bernal MT, D'Amico DJ, Folkman J, Yeo TK et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994; 118: 445–450.

    Article  CAS  Google Scholar 

  4. Ferrara N . Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004; 25: 581–611.

    Article  CAS  Google Scholar 

  5. Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 1995; 92: 10457–10461.

    Article  CAS  Google Scholar 

  6. Willet CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT et al. Direct evidence that the VEGF-specific antibody bevicizumab has antivascular effects in human rectal cancer. Nat Med 2004; 10: 145–147.

    Article  Google Scholar 

  7. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 2006; 355: 1419–1431.

    Article  CAS  Google Scholar 

  8. Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 1992; 187: 1579–1586.

    Article  CAS  Google Scholar 

  9. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT . The fms-like tyrosine kinase a receptor for vascular endothelial growth factor. Science 1992; 255: 989–991.

    Article  CAS  Google Scholar 

  10. Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT . Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 1993; 90: 7533–7537.

    Article  CAS  Google Scholar 

  11. Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 1990; 5: 519–524.

    CAS  PubMed  Google Scholar 

  12. Kendall RL, Thomas KA . Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 1993; 90: 10705–10709.

    Article  CAS  Google Scholar 

  13. Davis-Smyth T, Chen H, Park J, Presta LG, Ferrara N . The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J 1996; 15: 4919–4927.

    Article  CAS  Google Scholar 

  14. Barleon B, Totzke F, Herzog C, Blanke S, Kremmer E, Siemeister G et al. Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor Flt-1. J Biol Chem 1997; 272: 10382–10388.

    Article  CAS  Google Scholar 

  15. Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, de Vos AM . Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 1997; 91: 695–704.

    Article  CAS  Google Scholar 

  16. Davis-Smyth T, Presta LG, Ferrara N . Mapping the charged residues in the second immunoglobulin-like domain of the vascular endothelial growth factor/placenta growth factor receptor Flt-1 required for binding and structural stability. J Biol Chem 1998; 273: 3216–3222.

    Article  CAS  Google Scholar 

  17. Cunningham SA, Stephan CC, Arrate MP, Ayer KG, Brock TA . Identification of the extracellular domains of Flt-1 that mediate ligand interactions. Biochem Biophys Res Commun 1997; 231: 596–599.

    Article  CAS  Google Scholar 

  18. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 2002; 99: 11393–11398.

    Article  CAS  Google Scholar 

  19. Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 1996; 5: 591–594.

    Article  CAS  Google Scholar 

  20. Ali RR, Reichel MB, Hunt DM, Bhattacharya SS . Gene therapy for inherited retinal degeneration. Br J Ophthalmol 1997; 81: 795–801.

    Article  CAS  Google Scholar 

  21. Ali RR, Reichel MB, De Alwis M, Kanuga N, Kinnon C, Levinsky RJ et al. Adeno-associated virus gene transfer to mouse retina. Hum Gene Ther 1998; 9: 81–86.

    Article  CAS  Google Scholar 

  22. Lai CM, Shen WY, Brankov M, Lai YK, Barnett NL, Lee SY et al. Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys. Mol Ther 2005; 12: 659–668.

    Article  CAS  Google Scholar 

  23. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 1988; 85: 5879–5883.

    Article  CAS  Google Scholar 

  24. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994; 35: 101–111.

    CAS  PubMed  Google Scholar 

  25. Bennett J . Commentary: an aye for eye gene therapy. Hum Gene Ther 2006; 17: 177–179.

    Article  CAS  Google Scholar 

  26. Jacobson SG, Acland GM, Aguirre GD, Aleman TS, Schwartz SB, Cideciyan AV et al. Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Mol Ther 2006; 13: 1074–1084.

    Article  CAS  Google Scholar 

  27. Bainbridge JW, Mistry A, De Alwis M, Paleolog E, Baker A, Thrasher AJ et al. Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Therapy 2002; 9: 320–326.

    Article  CAS  Google Scholar 

  28. Lai YK, Shen WY, Brankov M, Lai CM, Constable IJ, Rakoczy PE . Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Therapy 2002; 9: 804–813.

    Article  CAS  Google Scholar 

  29. Gehlbach P, Demetriades AM, Yamamoto S, Deering T, Xiao WH, Duh EJ et al. Periocular gene transfer of sFlt-1 suppresses ocular neovascularization and vascular endothelial growth factor-induced breakdown of the blood–retinal barrier. Hum Gene Ther 2003; 14: 129–141.

    Article  CAS  Google Scholar 

  30. Xu L, Daly T, Gao C, Flotte TR, Song S, Byrne BJ et al. CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice. Hum Gene Ther 2001; 12: 563–573.

    Article  CAS  Google Scholar 

  31. Ziegler RJ, Lonning SM, Armentano D, Li C, Souza DW, Cherry M et al. AAV2 vector harboring a liver-restricted promoter facilitates sustained expression of therapeutic levels of alpha-galactosidase A and the induction of immune tolerance in Fabry mice. Mol Ther 2004; 9: 231–240.

    Article  CAS  Google Scholar 

  32. Vincent KA, Piraino ST, Wadsworth SC . Analysis of recombinant adeno-associated virus packaging and requirements for rep and cap gene products. J Virol 1997; 71: 1897–1905.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites TJ et al. Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 2002; 28: 158–167.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sirkka Kyostio-Moore and for helpful discussions; Michelle Deng for valuable comments on the paper; Shelley Nass and Denise Woodcock for virus production and Bob Brown for support with illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Scaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pechan, P., Rubin, H., Lukason, M. et al. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther 16, 10–16 (2009). https://doi.org/10.1038/gt.2008.115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.115

Keywords

This article is cited by

Search

Quick links