Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anti-angiogenic therapy increases intratumoral adenovirus distribution by inducing collagen degradation

Abstract

Conditionally replicating adenoviruses (CRAd) are a promising class of gene therapy agents that can overcome already known glioblastoma (GBM) resistance mechanisms but have limited distribution upon direct intratumoral (i.t.) injection. Collagen bundles in the extracellular matrix (ECM) have an important role in inhibiting virus distribution. In fact, ECM pre-treatment with collagenases improves virus distributions to tumor cells. Matrix metalloproteinases (MMPs) are an endogenous class of collagenases secreted by tumor cells whose function can be altered by different drugs including anti-angiogenic agents, such as bevacizumab. In this study we hypothesized that upregulation of MMP activity during anti-angiogenic therapy can improve CRAd-S-pk7 distribution in GBM. We find that MMP-2 activity in human U251 GBM xenografts increases (*P=0.03) and collagen IV content decreases (*P=0.01) during vascular endothelial growth factor (VEGF-A) antibody neutralization. After proving that collagen IV inhibits CRAd-S-pk7 distribution in U251 xenografts (Spearman rho=−0.38; **P=0.003), we show that VEGF-blocking antibody treatment followed by CRAd-S-pk7 i.t. injection reduces U251 tumor growth more than each individual agent alone (***P<0.0001). Our data propose a novel approach to improve virus distribution in tumors by relying on the early effects of anti-angiogenic therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il'yasova D et al. Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer 2008; 113 (7 Suppl): 1953–1968.

    Article  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10: 459–466.

    Article  CAS  Google Scholar 

  3. Ulasov IV, Zhu ZB, Tyler MA, Han Y, Rivera AA, Khramtsov A et al. Survivin-driven and fiber-modified oncolytic adenovirus exhibits potent antitumor activity in established intracranial glioma. Hum Gene Ther 2007; 18: 589–602.

    Article  CAS  Google Scholar 

  4. Wojton J, Kaur B . Impact of tumor microenvironment on oncolytic viral therapy. Cytokine Growth Factor Rev 2010; 21: 127–134.

    Article  CAS  Google Scholar 

  5. Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di Tomaso E et al. Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci USA 2001; 98: 4628–4633.

    Article  CAS  Google Scholar 

  6. McKee TD, Grandi P, Mok W, Alexandrakis G, Insin N, Zimmer JP et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res 2006; 66: 2509–2513.

    Article  CAS  Google Scholar 

  7. Kim JH, Lee YS, Kim H, Huang JH, Yoon AR, Yun CO . Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst 2006; 98: 1482–1493.

    Article  CAS  Google Scholar 

  8. Ganesh S, Gonzalez Edick M, Idamakanti N, Abramova M, Vanroey M, Robinson M et al. Relaxin-expressing, fiber chimeric oncolytic adenovirus prolongs survival of tumor-bearing mice. Cancer Res 2007; 67: 4399–4407.

    Article  CAS  Google Scholar 

  9. Hong CS, Fellows W, Niranjan A, Alber S, Watkins S, Cohen JB et al. Ectopic matrix metalloproteinase-9 expression in human brain tumor cells enhances oncolytic HSV vector infection. Gene Therapy 2010; 17: 1200–1205.

    Article  CAS  Google Scholar 

  10. Lucio-Eterovic AK, Piao Y, de Groot JF . Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res 2009; 15: 4589–4599.

    Article  CAS  Google Scholar 

  11. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009; 27: 4733–4740.

    Article  CAS  Google Scholar 

  12. Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009; 27: 740–745.

    Article  CAS  Google Scholar 

  13. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D . Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284: 808–812.

    Article  CAS  Google Scholar 

  14. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004; 6: 553–563.

    CAS  Google Scholar 

  15. Dickson PV, Hamner JB, Sims TL, Fraga CH, Ng CY, Rajasekeran S et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 2007; 13: 3942–3950.

    Article  CAS  Google Scholar 

  16. Hu B, Guo P, Bar-Joseph I, Imanishi Y, Jarzynka MJ, Bogler O et al. Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene 2007; 26: 5577–5586.

    Article  CAS  Google Scholar 

  17. Yun YJ, Li SH, Cho YS, Park JW, Chun YS . Survivin mediates prostate cell protection by HIF-1alpha against zinc toxicity. Prostate 2010; 70: 1179–1188.

    Article  CAS  Google Scholar 

  18. Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP et al. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther 2009; 8: 1867–1877.

    Article  CAS  Google Scholar 

  19. Libertini S, Iacuzzo I, Perruolo G, Scala S, Ierano C, Franco R et al. Bevacizumab increases viral distribution in human anaplastic thyroid carcinoma xenografts and enhances the effects of E1A-defective adenovirus dl922-947. Clin Cancer Res 2008; 14: 6505–6514.

    Article  CAS  Google Scholar 

  20. Reichert S, Rodel C, Mirsch J, Harter PN, Tomicic MT, Mittelbronn M et al. Survivin inhibition and DNA double-strand break repair: A molecular mechanism to overcome radioresistance in glioblastoma. Radiother Oncol 2011; 101: 51–58.

    Article  CAS  Google Scholar 

  21. de Groot JF, Fuller G, Kumar AJ, Piao Y, Eterovic K, Ji Y et al. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol 2010; 12: 233–242.

    Article  CAS  Google Scholar 

  22. Mok W, Boucher Y, Jain RK . Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res 2007; 67: 10664–10668.

    Article  CAS  Google Scholar 

  23. Chernov AV, Sounni NE, Remacle AG, Strongin AY . Epigenetic control of the invasion-promoting MT1-MMP/MMP-2/TIMP-2 axis in cancer cells. J Biol Chem 2009; 284: 12727–12734.

    Article  CAS  Google Scholar 

  24. Semenza GL . Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    Article  CAS  Google Scholar 

  25. Elstner A, Holtkamp N, von Deimling A . Involvement of Hif-1 in desferrioxamine-induced invasion of glioblastoma cells. Clin Exp Metastasis 2007; 24: 57–66.

    Article  CAS  Google Scholar 

  26. Lu KV, Jong KA, Rajasekaran AK, Cloughesy TF, Mischel PS . Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Lab Invest 2004; 84: 8–20.

    Article  CAS  Google Scholar 

  27. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110.

    Article  CAS  Google Scholar 

  28. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M et al. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 2012; 209: 507–520.

    Article  CAS  Google Scholar 

  29. Lee J, Yu H, Choi K, Choi C . Differential dependency of human cancer cells on vascular endothelial growth factor-mediated autocrine growth and survival. Cancer Lett 2011; 309: 145–150.

    Article  CAS  Google Scholar 

  30. Kargiotis O, Chetty C, Gondi CS, Tsung AJ, Dinh DH, Gujrati M et al. Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene 2008; 27: 4830–4840.

    Article  CAS  Google Scholar 

  31. Lamfers ML, Gianni D, Tung CH, Idema S, Schagen FH, Carette JE et al. Tissue inhibitor of metalloproteinase-3 expression from an oncolytic adenovirus inhibits matrix metalloproteinase activity in vivo without affecting antitumor efficacy in malignant glioma. Cancer Res 2005; 65: 9398–9405.

    Article  CAS  Google Scholar 

  32. Zhang W, Fulci G, Buhrman JS, Stemmer-Rachamimov AO, Chen JW, Wojtkiewicz GR et al. Bevacizumab with angiostatin-armed oHSV increases antiangiogenesis and decreases bevacizumab-induced invasion in U87 glioma. Mol Ther 2011; 20: 37–45.

    Article  CAS  Google Scholar 

  33. Guse K, Ranki T, Ala-Opas M, Bono P, Sarkioja M, Rajecki M et al. Treatment of metastatic renal cancer with capsid-modified oncolytic adenoviruses. Mol Cancer Ther 2007; 6: 2728–2736.

    Article  CAS  Google Scholar 

  34. Gutermann A, Mayer E, von Dehn-Rothfelser K, Breidenstein C, Weber M, Muench M et al. Efficacy of oncolytic herpesvirus NV1020 can be enhanced by combination with chemotherapeutics in colon carcinoma cells. Hum Gene Ther 2006; 17: 1241–1253.

    Article  CAS  Google Scholar 

  35. Guse K, Sloniecka M, Diaconu I, Ottolino-Perry K, Tang N, Ng C et al. Antiangiogenic arming of an oncolytic vaccinia virus enhances antitumor efficacy in renal cell cancer models. J Virol 2010; 84: 856–866.

    Article  CAS  Google Scholar 

  36. Fuh G, Wu P, Liang WC, Ultsch M, Lee CV, Moffat B et al. Structure-function studies of two synthetic anti-vascular endothelial growth factor Fabs and comparison with the Avastin Fab. J Biol Chem 2006; 281: 6625–6631.

    Article  CAS  Google Scholar 

  37. Ulasov IV, Sonabend AM, Nandi S, Khramtsov A, Han Y, Lesniak MS . Combination of adenoviral virotherapy and temozolomide chemotherapy eradicates malignant glioma through autophagic and apoptotic cell death in vivo. Br J Cancer 2009; 100: 1154–1164.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Feifei Liu for statistically analyzing the data and Derek A Wainwright for optimizing the immunofluorescence staining protocol. A cross species reacting monoclonal antibody to VEGF-A (clone B20-4.1.1) was provided by Genentech (San Francisco, CA, USA). This work was supported by the NCI (R01CA122930, R01CA138587), the National Institute of Neurological Disorders and Stroke (U01NS069997), and the American Cancer Society (RSG-07-276-01-MGO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Lesniak.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaci, B., Ulasov, I., Ahmed, A. et al. Anti-angiogenic therapy increases intratumoral adenovirus distribution by inducing collagen degradation. Gene Ther 20, 318–327 (2013). https://doi.org/10.1038/gt.2012.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.42

Keywords

This article is cited by

Search

Quick links