Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Modulation of Treg function improves adenovirus vector-mediated gene expression in the airway

Abstract

Virus vector-mediated gene transfer has been developed as a treatment for cystic fibrosis (CF) airway disease, a lethal inherited disorder caused by somatic mutations in the cystic fibrosis transmembrane conductance regulator gene. The pathological proinflammatory environment of CF as well as the naïve and adaptive immunity induced by the virus vector itself limits the effectiveness of gene therapy for CF airway. Here, we report the use of an HDAC inhibitor, valproic acid (VPA), to enhance the activity of the regulatory T cells (Treg) and to improve the expression of virus vector-mediated gene transfer to the respiratory epithelium. Our study demonstrates the potential utility of VPA, a drug used for over 50 years in humans as an anticonvulsant and mood-stabilizer, in controlling inflammation and improving the efficacy of gene transfer in CF airway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Massie J, Curnow L, Gaffney L, Carlin J, Francis I . Declining prevalence of cystic fibrosis since the introduction of newborn screening. Arch Di Child 2010; 95: 531–533.

    Article  Google Scholar 

  2. Koehler DR, Downey GP, Sweezey NB, Tanswell AK, Hu J . Lung inflammation as a therapeutic target in cystic fibrosis. Am J Respir Cell Mol Biol 2004; 31: 377–381.

    Article  CAS  PubMed  Google Scholar 

  3. Rowe SM, Miller S, Sorscher EJ . Cystic fibrosis. N Engl J Med 2005; 352: 1992–2001.

    Article  CAS  PubMed  Google Scholar 

  4. Bonfield TL, Panuska JR, Konstan MW, Hilliard KA, Hilliard JB, Ghnaim H et al. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med 1995; 152 (6 Pt 1): 2111–2118.

    Article  CAS  PubMed  Google Scholar 

  5. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245: 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  6. Griesenbach U, Geddes DM, Alton EW . Gene therapy progress and prospects: cystic fibrosis. Gene Therapy 2006; 13: 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  7. Ziady AG, Davis PB . Current prospects for gene therapy of cystic fibrosis. Curr Opin Pharmacol 2006; 6: 515–521.

    Article  CAS  PubMed  Google Scholar 

  8. Prickett M, Jain M . Gene therapy in cystic fibrosis. Transl Res 2013; 161: 255–264.

    Article  CAS  PubMed  Google Scholar 

  9. Rich DP, Anderson MP, Gregory RJ, Cheng SH, Paul S, Jefferson DM et al. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 1990; 347: 358–363.

    Article  CAS  PubMed  Google Scholar 

  10. Drumm ML, Pope HA, Cliff WH, Rommens JM, Marvin SA, Tsui LC et al. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 1990; 62: 1227–1233.

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Li Q, Ertl HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson JM . Adeno-associated virus and lentivirus pseudotypes for lung-directed gene therapy. Proc Am Thorac Soc 2004; 1: 309–314.

    Article  CAS  PubMed  Google Scholar 

  13. Yang Y, Su Q, Wilson JM . Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs. J Virol 1996; 70: 7209–7212.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jooss K, Turka LA, Wilson JM . Blunting of immune responses to adenoviral vectors in mouse liver and lung with CTLA4Ig. Gene Therapy 1998; 5: 309–319.

    Article  CAS  PubMed  Google Scholar 

  15. Sack BK, Herzog RW . Evading the immune response upon in vivo gene therapy with viral vectors. Curr Opin Molr Ther 2009; 11: 493–503.

    CAS  Google Scholar 

  16. McKinley L, Logar AJ, McAllister F, Zheng M, Steele C, Kolls JK . Regulatory T cells dampen pulmonary inflammation and lung injury in an animal model of pneumocystis pneumonia. J Immunol 2006; 177: 6215–6226.

    Article  CAS  PubMed  Google Scholar 

  17. Wilson MS, Taylor MD, Balic A, Finney CA, Lamb JR, Maizels RM . Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J Exp Med 2005; 202: 1199–1212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhang H, Xiao Y, Zhu Z, Li B, Greene MI . Immune regulation by histone deacetylases: a focus on the alteration of FOXP3 activity. Immunol Cell Biol 2012; 90: 95–100.

    Article  PubMed  Google Scholar 

  19. Du T, Nagai Y, Xiao Y, Greene MI, Zhang H . Lysosome-dependent p300/FOXP3 degradation and limits T cell functions and enhances targeted therapy against cancers. Exp Mol Pathol 2013; 95: 38–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YY, Beekman JM, van Beekum O et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 2010; 115: 965–974.

    Article  CAS  PubMed  Google Scholar 

  21. Song X, Li B, Xiao Y, Chen C, Wang Q, Liu Y et al. Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep 2012; 1: 665–675.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Saouaf SJ, Li B, Zhang G, Shen Y, Furuuchi N, Hancock WW et al. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp Mol Pathol 2009; 87: 99–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O et al. An animal model for cystic fibrosis made by gene targeting. Science 1992; 257: 1083–1088.

    Article  CAS  PubMed  Google Scholar 

  24. Nathan C . Neutrophils and immunity: challenges and opportunities. Nate Rev Immunol 2006; 6: 173–182.

    Article  CAS  Google Scholar 

  25. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 2009; 138: 1019–1031.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Moreira JM, Scheipers P, Sorensen P . The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses. BMC Cancer 2003; 3: 30.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Brogdon JL, Xu Y, Szabo SJ, An S, Buxton F, Cohen D et al. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood 2007; 109: 1123–1130.

    Article  CAS  PubMed  Google Scholar 

  28. Fan S, Maguire CA, Ramirez SH, Bradel-Tretheway B, Sapinoro R, Sui Z et al. Valproic acid enhances gene expression from viral gene transfer vectors. J Virol Methods 2005; 125: 23–33.

    Article  CAS  PubMed  Google Scholar 

  29. Stedt H, Samaranayake H, Pikkarainen J, Maatta AM, Alasaarela L, Airenne K et al. Improved therapeutic effect on malignant glioma with adenoviral suicide gene therapy combined with temozolomide. Gene Therapy 2013; 20: 1165–1171.

    Article  CAS  PubMed  Google Scholar 

  30. Ferrari S, Griesenbach U, Geddes DM, Alton E . Immunological hurdles to lung gene therapy. Clin Exp Immunol 2003; 132: 1–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhang Y, Chirmule N, Gao G, Wilson J . CD40 ligand-dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells. J Virol 2000; 74: 8003–8010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Rudensky AY, Campbell DJ . In vivo sites and cellular mechanisms of T reg cell-mediated suppression. J Exp Med 2006; 203: 489–492.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lahat N, Rivlin J, Iancu TC . Functional immunoregulatory T-cell abnormalities in cystic fibrosis patients. J Clin Immunol 1989; 9: 287–295.

    Article  CAS  PubMed  Google Scholar 

  34. Curotto de Lafaille MA, Kutchukhidze N, Shen S, Ding Y, Yee H, Lafaille JJ . Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 2008; 29: 114–126.

    Article  CAS  PubMed  Google Scholar 

  35. Conese M, Copreni E, Di Gioia S, De Rinaldis P, Fumarulo R . Neutrophil recruitment and airway epithelial cell involvement in chronic cystic fibrosis lung disease. J Cystic Fibrosis 2003; 2: 129–135.

    Article  CAS  Google Scholar 

  36. Cohen TS, Prince A . Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 2012; 18: 509–519.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Xiao Y, Li B, Zhou Z, Hancock WW, Zhang H, Greene MI . Histone acetyltransferase mediated regulation of FOXP3 acetylation and Treg function. Curr Opin Immunol 2010; 22: 583–591.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Li B, Saouaf SJ, Samanta A, Shen Y, Hancock WW, Greene MI . Biochemistry and therapeutic implications of mechanisms involved in FOXP3 activity in immune suppression. Curr Opin Immunol 2007; 19: 583–588.

    Article  CAS  PubMed  Google Scholar 

  39. Li B, Greene MI . FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle 2007; 6: 1432–1436.

    CAS  PubMed  Google Scholar 

  40. Richards H, Williams A, Jones E, Hindley J, Godkin A, Simon AK et al. Novel role of regulatory T cells in limiting early neutrophil responses in skin. Immunology 2010; 131: 583–592.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. D'Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH, Britos MF et al. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest 2009; 119: 2898–2913.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Conese M, Ascenzioni F, Boyd AC, Coutelle C, De Fino I, De Smedt S et al. Gene and cell therapy for cystic fibrosis: from bench to bedside. J Cystic Fibrosis 2011; 10 (Suppl 2): S114–S128.

    Article  CAS  Google Scholar 

  43. Limberis MP, Wilson JM . Adeno-associated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered. Proc Natl Acad Sci USA 2006; 103: 12993–12998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Limberis MP, Vandenberghe LH, Zhang L, Pickles RJ, Wilson JM . Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol The 2009; 17: 294–301.

    CAS  Google Scholar 

  45. New M, Olzscha H, La Thangue NB . HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol 2012; 6: 637–656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Price A, Limberis M, Gruneich JA, Wilson JM, Diamond SL . Targeting viral-mediated transduction to the lung airway epithelium with the anti-inflammatory cationic lipid dexamethasone-spermine. Mol Ther 2005; 12: 502–509.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Vector Core, Animal Models Core and Cell Morphology Core of the Gene Therapy Program at the University of Pennsylvania for assistance with these studies. Flow cytometry was performed at the Abramson Cancer Center Flow Cytometry and Cell Sorting Shared Resource, a member of Path BioResource, in the Perelman School of Medicine of the University of Pennsylvania, which was established in part by equipment grants from the NIH Shared Instrument Program, and receives support from NIH P30 CA016520 from the National Cancer Institute. This work was supported by grants from the National Institutes of Health grants P30DK047757 (Pilot grant) and P01AI073489.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, Y., Limberis, M. & Zhang, H. Modulation of Treg function improves adenovirus vector-mediated gene expression in the airway. Gene Ther 21, 219–224 (2014). https://doi.org/10.1038/gt.2013.78

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.78

Keywords

This article is cited by

Search

Quick links