Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Review
  • Published:

Polycystic ovary syndrome in adolescents

Abstract

Background:

Polycystic ovary syndrome (PCOS) is the commonest endocrine disorder in women and typically presents during adolescence. The clinical and biochemical presentation is heterogeneous, but elevated serum concentrations of androgens are the most consistent biochemical abnormality and may be considered to be the hallmark of the syndrome. Many women with PCOS also have insulin resistance and hyperinsulinaemia, which may contribute to the clinical and endocrine abnormalities. The aetiology of PCOS is not clear but studies in the Rhesus monkey suggest that exposure to excess androgen during intrauterine life results in many of the features of human PCOS, including ovarian dysfunction, abnormal LH secretion and insulin resistance.

Objective:

To review the studies from the literature, including those of the author, regarding aetiology, presentation and management of PCOS in adolescents.

Results and conclusions:

We have proposed that PCOS in adolescents arises as a result of a genetically determined disorder of ovarian function that results in hyper-secretion of androgens, possibly during fetal life and also during physiological activation of the hypothalamic–pituitary–ovarian in infancy and at the onset of puberty. There is plentiful evidence for a genetic basis for PCOS (it appears to be a complex endocrine disorder resulting from the effects of a several genes), but environmental factors, notably nutrition, influence the clinical and biochemical phenotype. Obesity unmasks or amplifies symptoms, endocrine and metabolic abnormalities. The increasing incidence of childhood obesity has resulted in an alarming Increase not only in distressing symptoms but also impaired glucose tolerance and even diabetes among adolescent girls with PCOS. The search for PCOS genes in this condition, that is not only heterogeneous but also presents only in women of reproductive age, is not straightforward and has produced few convincing candidates so far. In due course, however, identification of the major susceptibility loci is likely to provide key insight into the aetiology of the syndrome and improve diagnosis and management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Zawadzki J, Dunaif A . Diagnostic Criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, Givens JR, Haseltine FP, Merriam GR (eds). Polycystic Ovary Syndrome. Blackwell Scientific Publications: Oxford, 1992, pp 377–384.

    Google Scholar 

  2. Franks S . Polycystic ovary syndrome. N Engl J Med 1995; 333: 853–861.

    CAS  PubMed  Google Scholar 

  3. Ehrmann DA . Polycystic ovary syndrome. N Engl J Med 2005; 352: 1223–1236.

    CAS  PubMed  Google Scholar 

  4. Adams J, Polson DW, Franks S . Prevalence of polycystic ovaries in women with anovulation and idiopathic hirsutism. Br Med J (Clin Res Ed) 1986; 293: 355–359.

    CAS  Google Scholar 

  5. Rotterdam 1. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004; 19: 41–47.

    Google Scholar 

  6. Franks S . Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: in defense of the Rotterdam criteria. J Clin Endocrinol Metab 2006; 91: 786–789.

    CAS  PubMed  Google Scholar 

  7. Azziz R . Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: the Rotterdam criteria are premature. J Clin Endocrinol Metab 2006; 91: 781–785.

    CAS  PubMed  Google Scholar 

  8. Dewailly D, Catteau-Jonard S, Reyss AC, Leroy M, Pigny P . Oligoanovulation with polycystic ovaries but not overt hyperandrogenism. J Clin Endocrinol Metab 2006; 91: 3922–3927.

    CAS  PubMed  Google Scholar 

  9. Welt CK, Gudmundsson JA, Arason G, Adams J, Palsdottir H, Gudlaugsdottir G et al. Characterizing discrete subsets of polycystic ovary syndrome as defined by the Rotterdam criteria: the impact of weight on phenotype and metabolic features. J Clin Endocrinol Metab 2006; 91: 4842–4848.

    CAS  PubMed  Google Scholar 

  10. Barber TM, Wass JA, McCarthy MI, Franks S . Metabolic characteristics of women with polycystic ovaries and oligo-amenorrhoea but normal androgen levels: implications for the management of polycystic ovary syndrome. Clin Endocrinol 2007; 66: 513–517.

    CAS  Google Scholar 

  11. Franks S . Polycystic ovary syndrome: a changing perspective. Clin Endocrinol (Oxf) 1989; 31: 87–120.

    CAS  Google Scholar 

  12. Legro RS, Kunselman AR, Dodson WC, Dunaif A . Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 1999; 84: 165–169.

    CAS  PubMed  Google Scholar 

  13. Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial J . Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care 1999; 22: 141–146.

    CAS  PubMed  Google Scholar 

  14. Abbott DH, Dumesic DA, Franks S . Developmental origin of polycystic ovary syndrome—a hypothesis. J Endocrinol 2002; 174: 1–5.

    CAS  PubMed  Google Scholar 

  15. Franks S, McCarthy MI, Hardy K . Development of polycystic ovary syndrome: involvement of genetic and environmental factors. Int J Androl 2006; 29: 278–285; discussion 286–90.

    CAS  PubMed  Google Scholar 

  16. Dumesic DA, Abbott DH, Eisner JR, Herrmann RR, Reed JE, Welch TJ et al. Pituitary desensitization to gonadotropin-releasing hormone increases abdominal adiposity in hyperandrogenic anovulatory women. Fertil Steril 1998; 70: 94–101.

    CAS  PubMed  Google Scholar 

  17. Eisner JR, Dumesic DA, Kemnitz JW, Abbott DH . Timing of prenatal androgen excess determines differential impairment in insulin secretion and action in adult female rhesus monkeys. J Clin Endocrinol Metab 2000; 85: 1206–1210.

    CAS  PubMed  Google Scholar 

  18. Eisner JR, Barnett MA, Dumesic DA, Abbott DH . Ovarian hyperandrogenism in adult female rhesus monkeys exposed to prenatal androgen excess. Fertil Steril 2002; 77: 167–172.

    PubMed  Google Scholar 

  19. McClamrock HD, Adashi EY . Gestational hyperandrogenism. Fertil Steril 1992; 57: 257–274.

    CAS  PubMed  Google Scholar 

  20. Barnes RB, Rosenfield RL, Ehrmann DA, Cara JF, Cuttler L, Levitsky LL et al. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 1994; 79: 1328–1333.

    CAS  PubMed  Google Scholar 

  21. Cole B, Hensinger K, Maciel GA, Chang RJ, Erickson GF . Human fetal ovary development involves the spatiotemporal expression of p450c17 protein. J Clin Endocrinol Metab 2006; 91: 3654–3661.

    CAS  PubMed  Google Scholar 

  22. Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS et al. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 2000; 85: 4047–4052.

    CAS  PubMed  Google Scholar 

  23. Bridges NA, Cooke A, Healy MJ, Hindmarsh PC, Brook CG . Standards for ovarian volume in childhood and puberty. Fertil Steril 1993; 60: 456–460.

    CAS  PubMed  Google Scholar 

  24. Rosenfield RL . Clinical review: Identifying children at risk for polycystic ovary syndrome. J Clin Endocrinol Metab 2007; 92: 787–796.

    CAS  PubMed  Google Scholar 

  25. Ibanez L, Potau N, Francois I, de Zegher F . Precocious pubarche, hyperinsulinism, and ovarian hyperandrogenism in girls: relation to reduced fetal growth. J Clin Endocrinol Metab 1998; 83: 3558–3562.

    CAS  PubMed  Google Scholar 

  26. Hannon TS, Janosky J, Arslanian SA . Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatr Res 2006; 60: 759–763.

    CAS  PubMed  Google Scholar 

  27. Bergh C, Carlsson B, Olsson JH, Billig H, Hillensjo T . Effects of insulin-like growth factor I and growth hormone in cultured human granulosa cells. Ann NY Acad Sci 1991; 626: 169–176.

    CAS  PubMed  Google Scholar 

  28. Nahum R, Thong KJ, Hillier SG . Metabolic regulation of androgen production by human thecal cells in vitro. Hum Reprod 1995; 10: 75–81.

    CAS  PubMed  Google Scholar 

  29. Willis D, Franks S . Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-l insulin-like growth factor receptor. J Clin Endocrinol Metab 1995; 80: 3788–3790.

    CAS  PubMed  Google Scholar 

  30. Willis D, Mason H, Gilling-Smith C, Franks S . Modulation by insulin of follicle-stimulating hormone and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J Clin Endocrinol Metab 1996; 81: 302–309.

    CAS  PubMed  Google Scholar 

  31. Franks S . Adult polycystic ovary syndrome begins in childhood. Best Pract Res Clin Endocrinol Metab 2002; 16: 263–272.

    PubMed  Google Scholar 

  32. Lin Y, Fridstrom M, Hillensjo T . Insulin stimulation of lactate accumulation in isolated human granulosa-luteal cells: a comparison between normal and polycystic ovaries. Hum Reprod 1997; 12: 2469–2472.

    CAS  PubMed  Google Scholar 

  33. Fedorcsak P, Storeng R, Dale PO, Tanbo T, Abyholm T . Impaired insulin action on granulosa-lutein cells in women with polycystic ovary syndrome and insulin resistance. Gynecol Endocrinol 2000; 14: 327–336.

    CAS  PubMed  Google Scholar 

  34. Rice S, Christoforidis N, Gadd C, Nikolaou D, Seyani L, Donaldson A et al. Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum Reprod 2005; 20: 373–381.

    CAS  PubMed  Google Scholar 

  35. Franks S, Gharani N, Waterworth D, Batty S, White D, Williamson R et al. The genetic basis of polycystic ovary syndrome. Hum Reprod 1997; 12: 2641–2648.

    CAS  PubMed  Google Scholar 

  36. Legro RS, Driscoll D, Strauss III JF, Fox J, Dunaif A . Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci USA 1998; 95: 14956–14960.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Franks S, McCarthy M . Genetics of ovarian disorders: polycystic ovary syndrome. Rev Endocr Metab Disord 2004; 5: 69–76.

    CAS  PubMed  Google Scholar 

  38. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI . Heritability of polycystic ovary syndrome (PCOS) in a Dutch twin-family study. J Clin Endocrinol Metab 2006; 91: 2100–2104.

    CAS  PubMed  Google Scholar 

  39. Legro RS, Bentley-Lewis R, Driscoll D, Wang SC, Dunaif A . Insulin resistance in the sisters of women with polycystic ovary syndrome: association with hyperandrogenemia rather than menstrual irregularity. J Clin Endocrinol Metab 2002; 87: 2128–2133.

    CAS  PubMed  Google Scholar 

  40. Hague WM, Adams J, Reeders ST, Peto TE, Jacobs HS . Familial polycystic ovaries: a genetic disease? Clin Endocrinol (Oxf) 1988; 29: 593–605.

    CAS  Google Scholar 

  41. Ferriman D, Purdie AW . The inheritance of polycystic ovarian disease and a possible relationship to premature balding. Clin Endocrinol (Oxf) 1979; 11: 291–300.

    CAS  Google Scholar 

  42. Carey AH, Chan KL, Short F, White D, Williamson R, Franks S . Evidence for a single gene effect causing polycystic ovaries and male pattern baldness. Clin Endocrinol (Oxf) 1993; 38: 653–658.

    CAS  Google Scholar 

  43. Simpson JL . Elucidating the genetics of polycystic ovary syndrome. In: Dunaif A, Givens JR, Haseltine FP, Merriam GR (eds). Polycystic Ovary Syndrome. Blackwell Scientific Publications: Oxford, 1992, pp 59–77.

    Google Scholar 

  44. Stewart DR, Dombroski BA, Urbanek M, Ankener W, Ewens KG, Wood JR et al. Fine mapping of genetic susceptibility to polycystic ovary syndrome on chromosome 19p13.2 and tests for regulatory activity. J Clin Endocrinol Metab 2006; 91: 4112–4117.

    CAS  PubMed  Google Scholar 

  45. Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, Hardy K et al. Formation and early development of follicles in the polycystic ovary. Lancet 2003; 362: 1017–1021.

    CAS  PubMed  Google Scholar 

  46. Webber LJ, Stubbs SA, Stark J, Margara RA, Trew GH, Lavery SA et al. Prolonged survival in culture of preantral follicles from polycystic ovaries. J Clin Endocrinol Metab 2007; 92: 1975–1978.

    CAS  PubMed  Google Scholar 

  47. Maciel GA, Baracat EC, Benda JA, Markham SM, Hensinger K, Chang RJ et al. Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89: 5321–5327.

    CAS  PubMed  Google Scholar 

  48. Gilling-Smith C, Willis DS, Beard RW, Franks S . Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab 1994; 79: 1158–1165.

    CAS  PubMed  Google Scholar 

  49. Nelson VL, Qin Kn KN, Rosenfield RL, Wood JR, Penning TM, Legro RS et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab 2001; 86: 5925–5933.

    CAS  PubMed  Google Scholar 

  50. Dunaif A . Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997; 18: 774–800.

    CAS  PubMed  Google Scholar 

  51. Editorial. Freely associating. Nat Genet 1999; 22: 1–2.

    Google Scholar 

  52. Cardon LR, Bell JI . Association study designs for complex diseases. Nat Rev Genet 2001; 2: 91–99.

    CAS  PubMed  Google Scholar 

  53. Nam Menke M, Strauss III JF . Genetics of polycystic ovarian syndrome. Clin Obstet Gynecol 2007; 50: 188–204.

    PubMed  Google Scholar 

  54. Gharani N, Waterworth DM, Batty S, White D, Gilling-Smith C, Conway GS et al. Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism. Hum Mol Genet 1997; 6: 397–402.

    CAS  PubMed  Google Scholar 

  55. Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ et al. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Natl Acad Sci USA 1999; 96: 8573–8578.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaasenbeek M, Powell BL, Sovio U, Haddad L, Gharani N, Bennett A et al. Large-scale analysis of the relationship between CYP11A promoter variation, polycystic ovarian syndrome, and serum testosterone. J Clin Endocrinol Metab 2004; 89: 2408–2413.

    CAS  PubMed  Google Scholar 

  57. Tucci S, Futterweit W, Concepcion ES, Greenberg DA, Villanueva R, Davies TF et al. Evidence for association of polycystic ovary syndrome in caucasian women with a marker at the insulin receptor gene locus. J Clin Endocrinol Metab 2001; 86: 446–449.

    CAS  PubMed  Google Scholar 

  58. Urbanek M, Woodroffe A, Ewens KG, Diamanti-Kandarakis E, Legro RS, Strauss III JF et al. Candidate gene region for polycystic ovary syndrome on chromosome 19p13.2. J Clin Endocrinol Metab 2005; 90: 6623–6629.

    CAS  PubMed  Google Scholar 

  59. Matzuk MM . Revelations of ovarian follicle biology from gene knockout mice. Mol Cell Endocrinol 2000; 163: 61–66.

    CAS  PubMed  Google Scholar 

  60. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316: 1336–1341.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Franks S . Genetic and environmental origins of obesity relevant to reproduction. Reprod Biomed Online 2006; 12: 526–531.

    CAS  PubMed  Google Scholar 

  62. Cresswell JL, Barker DJ, Osmond C, Egger P, Phillips DI, Fraser RB . Fetal growth, length of gestation, and polycystic ovaries in adult life. Lancet 1997; 350: 1131–1135.

    CAS  PubMed  Google Scholar 

  63. Laitinen J, Taponen S, Martikainen H, Pouta A, Millwood I, Hartikainen AL et al. Body size from birth to adulthood as a predictor of self-reported polycystic ovary syndrome symptoms. Int J Obes Relat Metab Disord 2003; 27: 710–715.

    CAS  PubMed  Google Scholar 

  64. Kiddy DS, Sharp PS, White DM, Scanlon MF, Mason HD, Bray CS et al. Differences in clinical and endocrine features between obese and non-obese subjects with polycystic ovary syndrome: an analysis of 263 consecutive cases. Clin Endocrinol (Oxf) 1990; 32: 213–220.

    CAS  Google Scholar 

  65. Holte J, Bergh T, Berne C, Lithell H . Serum lipoprotein lipid profile in women with the polycystic ovary syndrome: relation to anthropometric, endocrine and metabolic variables. Clin Endocrinol (Oxf) 1994; 41: 463–471.

    CAS  Google Scholar 

  66. Singh A, Hamilton-Fairley D, Koistinen R, Seppala M, James VH, Franks S et al. Effect of insulin-like growth factor-type I (IGF-I) and insulin on the secretion of sex hormone binding globulin and IGF-I binding protein (IBP-I) by human hepatoma cells. J Endocrinol 1990; 124: R1–R3.

    CAS  PubMed  Google Scholar 

  67. Conway GS, Honour JW, Jacobs HS . Heterogeneity of the polycystic ovary syndrome: clinical, endocrine and ultrasound features in 556 patients. Clin Endocrinol (Oxf) 1989; 30: 459–470.

    CAS  Google Scholar 

  68. Conway GS, Jacobs HS . Clinical implications of hyperinsulinaemia in women. Clin Endocrinol (Oxf) 1993; 39: 623–632.

    CAS  Google Scholar 

  69. Franks S, Mason H, Willis D . Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol 2000; 163: 49–52.

    CAS  PubMed  Google Scholar 

  70. Willis DS, Watson H, Mason HD, Galea R, Brincat M, Franks S . Premature response to luteinizing hormone of granulosa cells from anovulatory women with polycystic ovary syndrome: relevance to mechanism of anovulation. J Clin Endocrinol Metab 1998; 83: 3984–3991.

    CAS  PubMed  Google Scholar 

  71. Kiddy DS, Hamilton-Fairley D, Bush A, Short F, Anyaoku V, Reed MJ et al. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 1992; 36: 105–111.

    CAS  Google Scholar 

  72. Clark AM, Ledger W, Galletly C, Tomlinson L, Blaney F, Wang X et al. Weight loss results in significant improvement in pregnancy and ovulation rates in anovulatory obese women. Hum Reprod 1995; 10: 2705–2712.

    CAS  PubMed  Google Scholar 

  73. Clark AM, Thornley B, Tomlinson L, Galletley C, Norman RJ . Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod 1998; 13: 1502–1505.

    CAS  PubMed  Google Scholar 

  74. Huber-Buchholz MM, Carey DG, Norman RJ . Restoration of reproductive potential by lifestyle modification in obese polycystic ovary syndrome: role of insulin sensitivity and luteinizing hormone. J Clin Endocrinol Metab 1999; 84: 1470–1474.

    CAS  PubMed  Google Scholar 

  75. Moran L, Norman RJ . Understanding and managing disturbances in insulin metabolism and body weight in women with polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 2004; 18: 719–736.

    CAS  PubMed  Google Scholar 

  76. Palmert MR, Gordon CM, Kartashov AI, Legro RS, Emans SJ, Dunaif A . Screening for abnormal glucose tolerance in adolescents with polycystic ovary syndrome. J Clin Endocrinol Metab 2002; 87: 1017–1023.

    CAS  PubMed  Google Scholar 

  77. Koulouri O, Conway GS . A systematic review of commonly used medical treatments for hirsutism in women. Clin Endocrinol (Oxf) 2008; 68: 800–805.

    CAS  Google Scholar 

  78. Ibanez L, de Zegher F . Low-dose flutamide-metformin therapy for hyperinsulinemic hyperandrogenism in non-obese adolescents and women. Hum Reprod Update 2006; 12: 243–252.

    CAS  PubMed  Google Scholar 

  79. Legro RS . Long-term, low-dose flutamide does not cause hepatotoxicity in hyperandrogenic women. Nat Clin Pract Endocrinol Metab 2006; 2: 188–189.

    PubMed  Google Scholar 

  80. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393–403.

    CAS  PubMed  Google Scholar 

  81. Summerbell CD, Ashton V, Campbell KJ, Edmunds L, Kelly S, Waters E . Interventions for treating obesity in children. Cochrane Database Syst Rev 2003; (3): CD001872. Review.

  82. Freemark M, Bursey D . The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics 2001; 107: E55.

    CAS  PubMed  Google Scholar 

  83. Ibanez L, de Zegher F . Low-dose combination of flutamide, metformin and an oral contraceptive for non-obese, young women with polycystic ovary syndrome. Hum Reprod 2003; 18: 57–60.

    CAS  PubMed  Google Scholar 

  84. Allen HF, Mazzoni C, Heptulla RA, Murray MA, Miller N, Koenigs L et al. Randomized controlled trial evaluating response to metformin versus standard therapy in the treatment of adolescents with polycystic ovary syndrome. J Pediatr Endocrinol Metab 2005; 18: 761–768.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Franks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franks, S. Polycystic ovary syndrome in adolescents. Int J Obes 32, 1035–1041 (2008). https://doi.org/10.1038/ijo.2008.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.61

Keywords

This article is cited by

Search

Quick links