Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Bariatric and Metabolic Surgery Original Article
  • Published:

Ileal transposition surgery produces ileal length-dependent changes in food intake, body weight, gut hormones and glucose metabolism in rats

Abstract

Background:

Enhanced stimulation of the lower gut is hypothesized to play a key role in the weight loss and resolution of diabetes following bariatric surgeries. Ileal transposition (IT) permits study of the effects of direct lower gut stimulation on body weight, glucose homeostasis and other metabolic adaptations without the confounds of gastric restriction or foregut exclusion. However, the underlying mechanisms and the length of the ileum sufficient to produce metabolic benefits following IT surgery remain largely unknown.

Objective:

To determine the effects of transposing varying lengths of the ileum to upper jejunum on food intake, body weight, glucose tolerance and lower gut hormones, and the expression of key markers of glucose and lipid metabolism in skeletal muscle and adipose tissue in rats.

Methods:

Adult male Sprague–Dawley rats (n=9/group) were subjected to IT surgery with translocation of 5, 10 or 20 cm of the ileal segment to proximal jejunum or sham manipulations. Daily food intake and body weight were recorded, and an intraperitoneal glucose tolerance test was performed. Blood samples were assayed for hormones and tissue samples for mRNA (RT–qPCR) and/or protein abundance (immunoblotting) of regulatory metabolic markers.

Results:

We demonstrate that IT surgery exerts ileal length-dependent effects on multiple parameters including: (1) decreased food intake and weight gain, (2) improved glucose tolerance, (3) increased tissue expression and plasma concentrations of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), and decreased leptin concentrations and (4) upregulation of key markers of glucose metabolism (glucose transporter-4 (GLUT-4), insulin receptor substrate 1 (IRS-1), adenosine monophosphate-activated protein kinase (AMPK), hexokinase (HK) and phosphofructokinase (PFK)) together with a downregulation of lipogenic markers (fatty acid synthase (FAS)) in muscle and adipose tissue.

Conclusions:

Together, our data demonstrate that the reduction in food intake and weight gain, increase in lower gut hormones, glycemic improvements and associated changes in tissue metabolic markers following IT surgery are dependent on the length of the transposed ileum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dixon JB, Zimmet P, Alberti KG, Rubino F . Bariatric surgery: an IDF statement for obese Type 2 diabetes. Surg Obes Relat Dis 2011; 7: 433–447.

    Article  CAS  PubMed  Google Scholar 

  2. Goldfine AB, Shoelson SE, Aguirre V . Expansion and contraction: treating diabetes with bariatric surgery. Nat Med 2009; 15: 616–617.

    Article  CAS  PubMed  Google Scholar 

  3. Rubino F, Schauer PR, Kaplan LM, Cummings DE . Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med 2010; 61: 393–411.

    Article  CAS  PubMed  Google Scholar 

  4. Cummings DE . Metabolic surgery for type 2 diabetes. Nat Med 2012; 18: 656–658.

    Article  CAS  PubMed  Google Scholar 

  5. Chandarana K, Batterham RL . Shedding pounds after going under the knife: metabolic insights from cutting the gut. Nat Med 2012; 18: 668–669.

    Article  CAS  PubMed  Google Scholar 

  6. Laferrere B . Diabetes remission after bariatric surgery: is it just the incretins? Int J Obes (Lond) 2011; 35: S22–S25.

    Article  CAS  Google Scholar 

  7. Koopmans HS, Sclafani A, Fichtner C, Aravich PF . The effects of ileal transposition on food intake and body weight loss in VMH-obese rats. Am J Clin Nutr 1982; 35: 284–293.

    Article  CAS  PubMed  Google Scholar 

  8. Atkinson RL, Whipple JH, Atkinson SH, Stewart CC . Role of the small bowel in regulating food intake in rats. Am J Physiol 1982; 242: R429–R433.

    CAS  PubMed  Google Scholar 

  9. DePaula AL, Stival AR, DePaula CC, Halpern A, Vencio S . Surgical treatment of type 2 diabetes in patients with BMI below 35: mid-term outcomes of the laparoscopic ileal interposition associated with a sleeve gastrectomy in 202 consecutive cases. J Gastrointest Surg 2012; 16: 967–976.

    Article  PubMed  Google Scholar 

  10. Vencio S, Stival A, Halpern A, DePaula CC, DePaula AL . Early mechanisms of glucose improvement following laparoscopic ileal interposition associated with a sleeve gastrectomy evaluated by the euglycemic hyperinsulinemic clamp in type 2 diabetic patients with BMI below 35. Dig Surg 2011; 28: 293–298.

    Article  CAS  PubMed  Google Scholar 

  11. De Paula AL, Stival AR, Halpern A, DePaula CC, Mari A, Muscelli E et al. Improvement in insulin sensitivity and beta-cell function following ileal interposition with sleeve gastrectomy in type 2 diabetic patients: potential mechanisms. J Gastrointest Surg 2011; 15: 1344–1353.

    Article  PubMed  Google Scholar 

  12. Koopmans HS, Ferri GL, Sarson DL, Polak JM, Bloom SR . The effects of ileal transposition and jejunoileal bypass on food intake and GI hormone levels in rats. Physiol Behav 1984; 33: 601–609.

    Article  CAS  PubMed  Google Scholar 

  13. Boozer CN, Choban PS, Atkinson RL . Ileal transposition surgery attenuates the increased efficiency of weight gain on a high-fat diet. Int J Obes 1990; 14: 869–878.

    CAS  PubMed  Google Scholar 

  14. Chen DC, Stern JS, Atkinson RL . Effects of ileal transposition on food intake, dietary preference, and weight gain in Zucker obese rats. Am J Physiol 1990; 258: R269–R273.

    CAS  PubMed  Google Scholar 

  15. Strader AD, Vahl TP, Jandacek RJ, Woods SC, D'Alessio DA, Seeley RJ . Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab 2005; 288: E447–E453.

    Article  CAS  PubMed  Google Scholar 

  16. Chelikani PK, Shah IH, Taqi E, Sigalet DL, Koopmans HH . Comparison of the effects of Roux-en-Y gastric bypass and ileal transposition surgeries on food intake, body weight, and circulating peptide yy concentrations in rats. Obes Surg 2010; 20: 1281–1288.

    Article  PubMed  Google Scholar 

  17. Grueneberger JM, Fritz T, Zhou C, Meyer S, Karcz-Socha I, Sawczyn T et al. Long segment ileal transposition leads to early amelioration of glucose control in the diabetic obese Zucker rat. Wideochir Inne Tech Malo Inwazyjne 2013; 8: 130–138.

    PubMed  PubMed Central  Google Scholar 

  18. Cummings BP, Strader ADStanhope KL, Graham JL, Lee J, Raybould HE et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology 2010; 138: 2437–2446.

    Article  CAS  PubMed  Google Scholar 

  19. Culnan DM, Albaugh V, Sun M, Lynch CJ, Lang CH, Cooney RN . Ileal interposition improves glucose tolerance and insulin sensitivity in the obese Zucker rat. Am J Physiol Gastrointest Liver Physiol 2010; 299: G751–G760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patriti A, Facchiano E, Annetti C, Aisa MC, Galli F, Fanelli C et al. Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model. Obes Surg 2005; 15: 1258–1264.

    Article  PubMed  Google Scholar 

  21. Patriti A, Aisa MC, Annetti C, Sidoni A, Galli F, Ferri I et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-kakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery 2007; 142: 74–85.

    Article  PubMed  Google Scholar 

  22. Strader AD, Clausen TR, Goodin SZ, Wendt D . Ileal interposition improves glucose tolerance in low dose streptozotocin-treated diabetic and euglycemic rats. Obes Surg 2009; 19: 96–104.

    Article  PubMed  Google Scholar 

  23. Kindel TL, Yoder SM, Seeley RJ, D'Alessio DA, Tso P . Duodenal-jejunal exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki rat by a GLP-1 receptor-mediated mechanism. J Gastrointest Surg 2009; 13: 1762–1772.

    Article  PubMed  Google Scholar 

  24. Kohli R, Kirby M, Setchell KD, Jha P, Klustaitis K, Woollett LA et al. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. Am J Physiol Gastrointest Liver Physiol 2010; 299: G652–G660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koopmans HS, Sclafani A . Control of body weight by lower gut signals. Int J Obes 1981; 5: 491–495.

    CAS  PubMed  Google Scholar 

  26. Koopmans HS . Satiety signals from the gastrointestinal tract. Am J Clin Nutr 1985; 42: 1044–1049.

    Article  CAS  PubMed  Google Scholar 

  27. Atkinson RL, Brent EL . Appetite suppressant activity in plasma of rats after intestinal bypass surgery. Am J Physiol 1982; 243: R60–R64.

    CAS  PubMed  Google Scholar 

  28. Atkinson RL, Whipple JH, Atkinson SH, Stewar CC . Role of the small bowel in regulating food intake in rats. Am J Physiol 1982; 242: R429–R433.

    CAS  PubMed  Google Scholar 

  29. Nausheen S, Shah IH, Pezeshki A, Sigalet DL, Chelikani PK . Effects of sleeve gastrectomy and ileal transposition, alone and in combination, on food intake, body weight, gut hormones, and glucose metabolism in rats. Am J Physiol Endocrinol Metab 2013; 305: E507–E518.

    Article  CAS  PubMed  Google Scholar 

  30. Ikezawa F, Shibata C, Kikuchi D, Imoto H, Miura K, Naitoh T et al. Effects of ileal interposition on glucose metabolism in obese rats with diabetes. Surgery 2012; 151: 822–830.

    Article  PubMed  Google Scholar 

  31. Gaitonde S, Kohli R, Seeley R . The role of the gut hormone GLP-1 in the metabolic improvements caused by ileal transposition. J Surg Res 2012; 178: 33–39.

    Article  CAS  PubMed  Google Scholar 

  32. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP . The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981; 30: 1000–1007.

    Article  CAS  PubMed  Google Scholar 

  33. Samuel VT, Shulman GI . Mechanisms for insulin resistance: common threads and missing links. Cell 2012; 148: 852–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bonhomme S, Guijarro A, Keslacy S, Goncalves CG, Suzuki S, Chen C et al. Gastric bypass up-regulates insulin signaling pathway. Nutrition 2011; 27: 73–80.

    Article  CAS  PubMed  Google Scholar 

  35. Yan Z, Chen W, Liu S, Zhang G, Sun D, Hu S . Myocardial insulin signaling and glucose transport are up-regulated in Goto-Kakizaki type 2 diabetic rats after ileal transposition. Obes Surg 2012; 22: 493–501.

    Article  PubMed  Google Scholar 

  36. Chelikani PK, Haver AC, Reidelberger RD . Intermittent intraperitoneal infusion of peptide YY(3-36) reduces daily food intake and adiposity in obese rats. Am J Physiol Regul Integr Comp Physiol 2007; 293: R39–R46.

    Article  CAS  PubMed  Google Scholar 

  37. Abegg K, Schiesser M, Lutz TA, Bueter M . Acute peripheral GLP-1 receptor agonism or antagonism does not alter energy expenditure in rats after Roux-en-Y gastric bypass. Physiol Behav 2013; 119: 92–96.

    Article  PubMed  Google Scholar 

  38. Asarian L, Abegg K, Geary N, Schiesser M, Lutz TA, Bueter M . Estradiol increases body weight loss and gut-peptide satiation after Roux-en-Y gastric bypass in ovariectomized rats. Gastroenterology 2012; 143: 325–327.

    Article  CAS  PubMed  Google Scholar 

  39. Bueter M, Ahmed A, Ashrafian H, Le Roux CW . Bariatric surgery and hypertension. Surg Obes Relat Dis 2009; 5: 615–620.

    Article  PubMed  Google Scholar 

  40. Bueter M, Miras AD, Chichger H, Fenske W, Ghatei MA, Bloom SR et al. Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiol Behav 2011; 104: 709–721.

    Article  CAS  PubMed  Google Scholar 

  41. Bueter M, Lowenstein C, Olbers T, Wang M, Cluny NL, Bloom SR et al. Gastric bypass increases energy expenditure in rats. Gastroenterology 2010; 138: 1845–1853.

    Article  PubMed  Google Scholar 

  42. Le Roux CW, Bueter M, Theis N, Werling M, Ashrafian H, Lowenstein C et al. Gastric bypass reduces fat intake and preference. Am J Physiol Regul Integr Comp Physiol 2011; 301: R1057–R1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Le Roux CW, Borg C, Wallis K, Vincent RP, Bueter M, Goodlad R et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg 2010; 252: 50–56.

    Article  PubMed  Google Scholar 

  44. Mathes CM, Bueter M, Smith KR, Lutz TA, Le Roux CW, Spector AC . Roux-en-Y gastric bypass in rats increases sucrose taste-related motivated behavior independent of pharmacological GLP-1-receptor modulation. Am J Physiol Regul Integr Comp Physiol 2012; 302: R751–R767.

    Article  CAS  PubMed  Google Scholar 

  45. Chambers AP, Jessen L, Ryan KK, Sisley S, Wilson-Perez HE, Stefater MA et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology 2011; 141: 950–958.

    Article  CAS  PubMed  Google Scholar 

  46. Pezeshki A, Muench GP, Chelikani PK . Short communication: expression of peptide YY, proglucagon, neuropeptide Y receptor Y2, and glucagon-like peptide-1 receptor in bovine peripheral tissues. J Dairy Sci 2012; 95: 5089–5094.

    Article  CAS  PubMed  Google Scholar 

  47. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  48. Schmittgen TD, Livak KJ . Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008; 3: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  49. Kisielinski K, Willis S, Prescher A, Klosterhalfen B, Schumpelick V . A simple new method to calculate small intestine absorptive surface in the rat. Clin Exp Med 2002; 2: 131–135.

    Article  CAS  PubMed  Google Scholar 

  50. Cummings BP, Bettaieb A, Graham JL, Kim J, Ma F, Shibata N et al. Bile-acid-mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCD-T2DM rats. Dis Model Mech 2013; 6: 443–456.

    Article  CAS  PubMed  Google Scholar 

  51. Wang TT, Hu SY, Gao HD, Zhang GY, Liu CZ, Feng JB et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg 2008; 247: 968–975.

    Article  PubMed  Google Scholar 

  52. Cummings BP, Bettaieb A, Graham JL, Stanhope KL, Kowala M, Haj FG et al. Vertical sleeve gastrectomy improves glucose and lipid metabolism and delays diabetes onset in UCD-T2DM rats. Endocrinology 2012; 153: 3620–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid from the Heart and Stroke Foundation of Canada, Canada Foundation for Innovation, and the Koopmans Memorial Research Fund to PKC. AR was supported by studentships from the Natural Sciences and Engineering Research Council of Canada and Faculty of Veterinary Medicine. SN was supported by a graduate scholarship from the Faculty of Veterinary Medicine and a Queen Elizabeth II Graduate Scholarship. We appreciate the help of Imran Shah, David Min and Adel Pezeshki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P K Chelikani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

SN and PKC designed the study, AR and SN performed experiments, AR, SN and PKC conducted the tissue analyses, AR and PKC were responsible for the analysis and interpretation of data, PKC obtained funding, AR drafted the manuscript, AR, SN, PKC undertook the critical revision of the manuscript for important intellectual content and AR, SN and PKC approved the final version of the manuscript.

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramzy, A., Nausheen, S. & Chelikani, P. Ileal transposition surgery produces ileal length-dependent changes in food intake, body weight, gut hormones and glucose metabolism in rats. Int J Obes 38, 379–387 (2014). https://doi.org/10.1038/ijo.2013.201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2013.201

Keywords

This article is cited by

Search

Quick links