Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical Studies and Practice

Association of maternal prepregnancy BMI with metabolomic profile across gestation

Abstract

Background/Objectives:

Elevated prepregnancy body mass index (pBMI) and excess gestational weight gain (GWG) constitute important prenatal exposures that may program adiposity and disease risk in offspring. The objective of this study is to investigate the influence of pBMI and GWG on the maternal metabolomic profile across pregnancy, and to identify associations with birth weight.

Subjects/Methods:

This is a longitudinal prospective study of 167 nondiabetic women carrying a singleton pregnancy. Women were recruited between March 2011 and December 2013 from antenatal clinics affiliated to the University of California, Irvine, Medical Center. Seven women were excluded from analyses because of a diagnosis of diabetes during pregnancy. A total of 254 plasma metabolites known to be related to obesity in nonpregnant populations were analyzed in each trimester using targeted metabolomics. The effects of pBMI and GWG on metabolites were tested through linear regression and principle component analysis, adjusting for maternal sociodemographic factors, diet, and insulin resistance. A Bonferroni correction was applied for multiple comparison testing.

Results:

pBMI was significantly associated with 40 metabolites. Nonesterified fatty acids (NEFA) showed a strong positive association with pBMI, with specificity for mono-unsaturated and omega-6 NEFA. Among phospholipids, sphingomyelins with two double bonds and phosphatidylcholines containing 20:3 fatty acid chain, indicative of omega-6 NEFA, were positively associated with pBMI. Few associations between GWG, quality and quantity of the diet, insulin resistance and the maternal metabolome throughout gestation were detected. NEFA levels in the first and, to a lesser degree, in the second trimester were positively associated with birth weight percentiles.

Conclusions:

Preconception obesity appears to have a stronger influence on the maternal metabolic milieu than gestational factors such as weight gain, dietary intake and insulin resistance, highlighting the critical importance of preconception health. NEFA in general, as well as monounsaturated and omega-6 fatty acid species in particular, represent key metabolites for a potential mechanism of intergenerational transfer of obesity risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Entringer S, Buss C, Swanson JM, Cooper DM, Wing DA, Waffarn F et al. Fetal programming of body composition, obesity, and metabolic function: the role of intrauterine stress and stress biology. J Nutr Metabol 2012; 2012: 632548.

    Article  Google Scholar 

  2. Kabaran S, Besler H . Do fatty acids affect fetal programming? J Health Popul Nutr 2015; 33: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Koletzko B, Beyer J, Brands B, Demmelmair H, Grote V, Haile G et al. Early influences of nutrition on postnatal growth. Nestle Nutr Inst Workshop Ser 2013; 71: 11–27.

    PubMed  Google Scholar 

  4. Heerwagen MJ, Miller MR, Barbour LA, Friedman JE . Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol 2010; 299: R711–R722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Godfrey KM, Gluckman PD, Hanson MA . Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab 2010; 21: 199–205.

    Article  CAS  PubMed  Google Scholar 

  6. Rauschert S, Uhl O, Koletzko B, Hellmuth C . Metabolomic biomarkers for obesity in humans: a short review. Ann Nutr Metabol 2014; 64: 314–324.

    Article  CAS  Google Scholar 

  7. Butte NF . Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr 2000; 71: 1256S–1261S.

    Article  CAS  PubMed  Google Scholar 

  8. Koletzko B, Brands B, Chourdakis M, Cramer S, Grote V, Hellmuth C et al. The Power of Programming and the EarlyNutrition project: opportunities for health promotion by nutrition during the first thousand days of life and beyond. Ann Nutr Metab 2014; 64: 187–196.

    Article  CAS  PubMed  Google Scholar 

  9. Hellmuth C, Weber M, Koletzko B, Peissner W . Nonesterified fatty acid determination for functional lipidomics: comprehensive ultrahigh performance liquid chromatography-tandem mass spectrometry quantitation, qualification, and parameter prediction. Anal Chem 2012; 84: 1483–1490.

    Article  CAS  PubMed  Google Scholar 

  10. Uhl O, Glaser C, Demmelmair H, Koletzko B . Reversed phase LC/MS/MS method for targeted quantification of glycerophospholipid molecular species in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879: 3556–3564.

    Article  CAS  PubMed  Google Scholar 

  11. Moco S, Collino S, Rezzi S, Martin FP . Metabolomics perspectives in pediatric research. Pediatr Res 2013; 73: 570–576.

    Article  CAS  PubMed  Google Scholar 

  12. Lowe WL, Karban J . Genetics, genomics and metabolomics: new insights into maternal metabolism during pregnancy. Diabet Med 2014; 31: 254–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pinto J, Almeida LM, Martins AS, Duarte D, Domingues MR, Barros AS et al. Impact of fetal chromosomal disorders on maternal blood metabolome: toward new biomarkers? Am J Obstet Gynecol 2015; 213: 841.e1–e15.

    Article  CAS  Google Scholar 

  14. Gademan MG, Twickler TB, Roseboom TJ, Vrijkotte TG . Maternal lipid profile during early pregnancy and their children's blood pressure and cardiac autonomic balance at age 5-6 years. Int J Cardiol 2014; 176: 1003–1005.

    Article  CAS  PubMed  Google Scholar 

  15. Menni C, Zhai G, Macgregor A, Prehn C, Romisch-Margl W, Suhre K et al. Targeted metabolomics profiles are strongly correlated with nutritional patterns in women. Metabolomics 2013; 9: 506–514.

    Article  CAS  PubMed  Google Scholar 

  16. O'Gorman A, Morris C, Ryan M, O'Grada CM, Roche HM, Gibney ER et al. Habitual dietary intake impacts on the lipidomic profile. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966: 140–146.

    Article  CAS  PubMed  Google Scholar 

  17. Lindsay KL, Heneghan C, McNulty B, Brennan L, McAuliffe FM . Lifestyle and dietary habits of an obese pregnant cohort. Matern Child Health J 2015; 19: 25–32.

    Article  PubMed  Google Scholar 

  18. Lindsay KL, Hellmuth C, Uhl O, Buss C, Wadhwa PD, Koletzko B et al. Longitudinal metabolomic profiling of amino acids and lipids across healthy pregnancy. PLoS One 2015; 10: e0145794.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Oken E, Kleinman KP, Rich-Edwards J, Gillman MW . A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC Pediatr 2003; 3: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nelson SM, Matthews P, Poston L . Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Hum Reprod Update 2010; 16: 255–275.

    Article  PubMed  Google Scholar 

  21. Gaillard R, Steegers EA, Duijts L, Felix JF, Hofman A, Franco OH et al. Childhood cardiometabolic outcomes of maternal obesity during pregnancy: the Generation R Study. Hypertension 2014; 63: 683–691.

    Article  CAS  PubMed  Google Scholar 

  22. Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X . Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS One 2013; 8: e61627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mehta SH, Kerver JM, Sokol RJ, Keating DP, Paneth N . The association between maternal obesity and neurodevelopmental outcomes of offspring. J Pediatr 2014; 165: 891–896.

    Article  PubMed  Google Scholar 

  24. Penfold NC, Ozanne SE . Developmental programming by maternal obesity in 2015: outcomes, mechanisms, and potential interventions. Horm Behav 2015; 76: 143–152.

    Article  PubMed  Google Scholar 

  25. Catalano PM, Nizielski SE, Shao J, Preston L, Qiao L, Friedman JE . Downregulated IRS-1 and PPARgamma in obese women with gestational diabetes: relationship to FFA during pregnancy. Am J Physiol Endocrinol Metab 2002; 282: E522–E533.

    Article  CAS  PubMed  Google Scholar 

  26. Hellmuth C, Demmelmair H, Schmitt I, Peissner W, Bluher M, Koletzko B . Association between plasma nonesterified fatty acids species and adipose tissue fatty acid composition. PLoS One 2013; 8: e74927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Herrera E . Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine 2002; 19: 43–55.

    Article  CAS  PubMed  Google Scholar 

  28. Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ . The resurgence of hormone-sensitive lipase (HSL) in mammalian lipolysis. Gene 2011; 477: 1–11.

    Article  CAS  PubMed  Google Scholar 

  29. Di Cianni G, Miccoli R, Volpe L, Lencioni C, Ghio A, Giovannitti MG et al. Maternal triglyceride levels and newborn weight in pregnant women with normal glucose tolerance. Diabet Med 2005; 22: 21–25.

    Article  CAS  PubMed  Google Scholar 

  30. Schaefer-Graf UM, Graf K, Kulbacka I, Kjos SL, Dudenhausen J, Vetter K et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care 2008; 31: 1858–1863.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Standl M, Thiering E, Demmelmair H, Koletzko B, Heinrich J . Age-dependent effects of cord blood long-chain PUFA composition on BMI during the first 10 years of life. Br J Nutr 2014; 111: 2024–2031.

    Article  CAS  PubMed  Google Scholar 

  32. Ailhaud G, Guesnet P, Cunnane SC . An emerging risk factor for obesity: does disequilibrium of polyunsaturated fatty acid metabolism contribute to excessive adipose tissue development? Br J Nutr 2008; 100: 461–470.

    Article  CAS  PubMed  Google Scholar 

  33. Massiera F, Barbry P, Guesnet P, Joly A, Luquet S, Moreilhon-Brest C et al. A western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J Lipid Res 2010; 51: 2352–2361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moon RJ, Harvey NC, Robinson SM, Ntani G, Davies JH, Inskip HM et al. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J Clin Endocrinol Metab 2013; 98: 299–307.

    Article  CAS  PubMed  Google Scholar 

  35. Innis SM . Fatty acids and early human development. Early Hum Dev 2007; 83: 761–766.

    Article  CAS  PubMed  Google Scholar 

  36. Paton CM, Ntambi JM . Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 2009; 297: E28–E37.

    Article  CAS  PubMed  Google Scholar 

  37. Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab 2005; 2: 251–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Samuel VT, Petersen KF, Shulman GI . Lipid-induced insulin resistance: unravelling the mechanism. Lancet 2010; 375: 2267–2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang P, Belikova NA, Billheimer J, Rader DJ, Hill JS, Subbaiah PV . Inhibition of endothelial lipase activity by sphingomyelin in the lipoproteins. Lipids 2014; 49: 987–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pietilainen KH, Sysi-Aho M, Rissanen A, Seppanen-Laakso T, Yki-Jarvinen H, Kaprio J et al. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects—a monozygotic twin study. PLoS One 2007; 2: e218.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Samad F, Hester KD, Yang G, Hannun YA, Bielawski J . Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 2006; 55: 2579–2587.

    Article  CAS  PubMed  Google Scholar 

  42. Rauschert S, Uhl O, Koletzko B, Kirchberg F, Mori TA, Huang RC et al. Lipidomics reveals associations of phospholipids with obesity and insulin resistance in young adults. J Clin Endocrinol Metab 2015; 101: 871–879.

    Article  PubMed  Google Scholar 

  43. Fekete K, Gyorei E, Lohner S, Verduci E, Agostoni C, Decsi T . Long-chain polyunsaturated fatty acid status in obesity: a systematic review and meta-analysis. Obes Rev 2015; 16: 488–497.

    Article  CAS  PubMed  Google Scholar 

  44. Pickens CA, Sordillo LM, Comstock SS, Harris WS, Hortos K, Kovan B et al. Plasma phospholipids, non-esterified plasma polyunsaturated fatty acids and oxylipids are associated with BMI. Prostaglandins Leukot Essent Fatty Acids 2015; 95: 31–40.

    Article  CAS  PubMed  Google Scholar 

  45. de Vries PS, Gielen M, Rizopoulos D, Rump P, Godschalk R, Hornstra G et al. Association between polyunsaturated fatty acid concentrations in maternal plasma phospholipids during pregnancy and offspring adiposity at age 7: the MEFAB cohort. Prostaglandins Leukot Essent Fatty Acids 2014; 91: 81–85.

    Article  CAS  PubMed  Google Scholar 

  46. Uhl O, Demmelmair H, Segura MT, Florido J, Rueda R, Campoy C et al. Effects of obesity and gestational diabetes mellitus on placental phospholipids. Diabetes Res Clin Pract 2015; 109: 364–371.

    Article  CAS  PubMed  Google Scholar 

  47. Rump P, Popp-Snijders C, Heine RJ, Hornstra G . Components of the insulin resistance syndrome in seven-year-old children: relations with birth weight and the polyunsaturated fatty acid content of umbilical cord plasma phospholipids. Diabetologia 2002; 45: 349–355.

    Article  CAS  PubMed  Google Scholar 

  48. Koontz MB, Gunzler DD, Presley L, Catalano PM . Longitudinal changes in infant body composition: association with childhood obesity. Pediatr Obes 2014; 9: e141–e144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabol 2009; 9: 311–326.

    Article  CAS  Google Scholar 

  50. Pallares-Mendez R, Aguilar-Salinas CA, Cruz-Bautista I, Del Bosque-Plata L . Metabolomics in diabetes, a review. Ann Med 2016; 48: 89–102.

    Article  CAS  PubMed  Google Scholar 

  51. Hellmuth C, Kirchberg FF, Lass N, Harder U, Peissner W, Koletzko B et al. Tyrosine is associated with insulin resistance in longitudinal metabolomic profiling of obese children. J Diabetes Res 2016; 2016: 10.

    Article  Google Scholar 

  52. Battaglia FC, Regnault TR . Placental transport and metabolism of amino acids. Placenta 2001; 22: 145–161.

    Article  CAS  PubMed  Google Scholar 

  53. Butte NF, Liu Y, Zakeri IF, Mohney RP, Mehta N, Voruganti VS et al. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am J Clin Nutr 2015; 102: 256–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuc S, Koster MP, Pennings JL, Hankemeier T, Berger R, Harms AC et al. Metabolomics profiling for identification of novel potential markers in early prediction of preeclampsia. PLoS One 2014; 9: e98540.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu X, Xie C, Zhang Y, Fan Z, Yin Y, Blachier F . Glutamate-glutamine cycle and exchange in the placenta-fetus unit during late pregnancy. Amino Acids 2015; 47: 45–53.

    Article  CAS  PubMed  Google Scholar 

  56. Balasubramanian MN, Butterworth EA, Kilberg MS . Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab 2013; 304: E789–E799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schooneman MG, Vaz FM, Houten SM, Soeters MR . Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 2013; 62: 1–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Franca Kirchberg (Division of Metabolic and Nutritional Medicine, Dr von Hauner Children’s Hospital, University of Munich) who supported the statistical data analysis and Stefanie Winterstetter (Division of Metabolic and Nutritional Medicine, Dr von Hauner Children’s Hospital, University of Munich) who prepared the plasma samples for LC-MS/MS analysis.

Author contributions

CH: performed quality control, statistical data analysis and data interpretation and wrote the manuscript; KLL: performed statistical data analysis and data interpretation and wrote the manuscript; OU: performed laboratory analysis and quality control, contributed reagents/materials/analysis tools, and revised the manuscript; CB, PDW and SE: designed research studies and revised the manuscript;: BK: designed research studies, contributed reagents/materials/analysis tools and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Koletzko.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellmuth, C., Lindsay, K., Uhl, O. et al. Association of maternal prepregnancy BMI with metabolomic profile across gestation. Int J Obes 41, 159–169 (2017). https://doi.org/10.1038/ijo.2016.153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2016.153

This article is cited by

Search

Quick links