Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Maternal–fetal and neonatal pharmacogenomics: a review of current literature

Abstract

Pharmacogenomics, the study of specific genetic variations and their effect on drug response, will likely give rise to many applications in maternal–fetal and neonatal medicine; yet, an understanding of these applications in the field of obstetrics and gynecology and neonatal pediatrics is not widespread. This review describes the underpinnings of the field of pharmacogenomics and summarizes the current pharmacogenomic inquiries in relation to maternal–fetal medicine—including studies on various fetal and neonatal genetic cytochrome P450 (CYP) enzyme variants and their role in drug toxicities (for example, codeine metabolism, sepsis and selective serotonin reuptake inhibitor (SSRI) toxicity). Potential future directions, including alternative drug classification, improvements in drug efficacy and non-invasive pharmacogenomic testing, will also be explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Leeder JS . Developmental and pediatric pharmacogenomics. Pharmacogenomics 2003; 4: 331–341.

    Article  CAS  Google Scholar 

  2. Sadee W . Drug therapy and personalized health care: pharmacogenomics in perspective. Pharm Res 2008; 25: 2713–2719.

    Article  CAS  Google Scholar 

  3. Shurin SB, Nabel EG . Pharmacogenomics—ready for prime time? N Engl J Med 2008; 358: 1061–1063.

    Article  CAS  Google Scholar 

  4. Cunningham FG, Williams JW . Williams Obstetrics. McGraw-Hill: New York, 2001.

    Google Scholar 

  5. Sadler TW, Langman J . Langman's Medical Embryology. Lippincott Williams & Wilkins: Philadelphia, 2006.

    Google Scholar 

  6. Hall JG, Pauli RM, Wilson KM . Maternal and fetal sequelae of anticoagulation during pregnancy. Am J Med 1980; 68: 122–140.

    Article  CAS  Google Scholar 

  7. Bieche I, Narjoz C, Asselah T, Vacher S, Marcellin P, Lidereau R et al. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics 2007; 17: 731–742.

    Article  CAS  Google Scholar 

  8. Hakkola J, Pelkonen O, Pasanen M, Raunio H . Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol 1998; 28: 35–72.

    Article  CAS  Google Scholar 

  9. Wang L, Weinshilboum RM . Pharmacogenomics: candidate gene identification, functional validation and mechanisms. Hum Mol Genet 2008; 17: R174–R179.

    Article  CAS  Google Scholar 

  10. Hoyert DL, Mathews TJ, Menacker F, Strobino DM, Guyer B . Annual summary of vital statistics: 2004. Pediatrics 2006; 117: 168–183.

    Article  Google Scholar 

  11. Yoon PW, Olney RS, Khoury MJ, Sappenfield WM, Chavez GF, Taylor D . Contribution of birth defects and genetic diseases to pediatric hospitalizations. A population-based study. Arch Pediatr Adolesc Med 1997; 151: 1096–1103.

    Article  CAS  Google Scholar 

  12. Leeder JS, Mitchell AA . Application of pharmacogenomic strategies to the study of drug-induced birth defects. Clin Pharmacol Ther 2007; 81: 595–599.

    Article  CAS  Google Scholar 

  13. Boyle CA, Decoufle P, Yeargin-Allsopp M . Prevalence and health impact of developmental disabilities in US children. Pediatrics 1994; 93: 399–403.

    CAS  PubMed  Google Scholar 

  14. Gaedigk A, Baker DW, Totah RA, Gaedigk R, Pearce RE, Vyhlidal CA et al. Variability of CYP2J2 expression in human fetal tissues. J Pharmacol Exp Ther 2006; 319: 523–532.

    Article  CAS  Google Scholar 

  15. Adjei AA, Gaedigk A, Simon SD, Weinshilboum RM, Leeder JS . Interindividual variability in acetaminophen sulfation by human fetal liver: implications for pharmacogenetic investigations of drug-induced birth defects. Birth Defects Res A Clin Mol Teratol 2008; 82: 155–165.

    Article  CAS  Google Scholar 

  16. Richard K, Hume R, Kaptein E, Stanley EL, Visser TJ, Coughtrie MW . Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung, and brain. J Clin Endocrinol Metab 2001; 86: 2734–2742.

    CAS  PubMed  Google Scholar 

  17. Vietri M, Pietrabissa A, Mosca F, Rane A, Pacific GM . Human adult and foetal liver sulphotransferases: inhibition by mefenamic acid and salicylic acid. Xenobiotica 2001; 31: 153–161.

    Article  CAS  Google Scholar 

  18. Barker EV, Hume R, Hallas A, Coughtrie WH . Dehydroepiandrosterone sulfotransferase in the developing human fetus: quantitative biochemical and immunological characterization of the hepatic, renal, and adrenal enzymes. Endocrinology 1994; 134: 982–989.

    Article  CAS  Google Scholar 

  19. Duanmu Z, Weckle A, Koukouritaki SB, Hines RN, Falany JL, Falany CN et al. Developmental expression of aryl, estrogen, and hydroxysteroid sulfotransferases in pre- and postnatal human liver. J Pharmacol Exp Ther 2006; 316: 1310–1317.

    Article  CAS  Google Scholar 

  20. Rodriguez-Antona C, Jande M, Rane A, Ingelman-Sundberg M . Identification and phenotype characterization of two CYP3A haplotypes causing different enzymatic capacity in fetal livers. Clin Pharmacol Ther 2005; 77: 259–270.

    Article  CAS  Google Scholar 

  21. Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P et al. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 2004; 351: 2827–2831.

    Article  CAS  Google Scholar 

  22. Cascorbi I . Pharmacogenetics of cytochrome p4502D6: genetic background and clinical implication. Eur J Clin Invest 2003; 33 (Suppl 2): 17–22.

    Article  CAS  Google Scholar 

  23. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ . Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 2006; 368: 704.

    Article  Google Scholar 

  24. Allegaert K, Van Den Anker JN, Verbesselt R, de Hoon J, Vanhole C, Tibboel D et al. O-demethylation of tramadol in the first months of life. Eur J Clin Pharmacol 2005; 61: 837–842.

    Article  CAS  Google Scholar 

  25. Allegaert K, Van Schaik RH, Vermeersch S, Verbesselt R, Cossey V, Vanhole C et al. Postmenstrual age and CYP2D6 polymorphisms determine tramadol O-demethylation in critically ill neonates and infants. Pediatr Res 2008; 63: 674–679.

    Article  CAS  Google Scholar 

  26. Madadi P, Ross C, Hayden M, Carleton BC, Gaedigk A, Leeder JS et al. Pharmacogenetics of neonatal opioid toxicity following maternal use of codeine during breastfeeding: a case-control study. Clin Pharmacol Ther 2008; 85: 31–35.

    Article  Google Scholar 

  27. Gavin NI, Gaynes BN, Lohr KN, Meltzer-Brody S, Gartlehner G, Swinson T . Perinatal depression: a systematic review of prevalence and incidence. Obstet Gynecol 2005; 106: 1071–1083.

    Article  Google Scholar 

  28. Mann JJ . The medical management of depression. N Engl J Med 2005; 353: 1819–1834.

    Article  CAS  Google Scholar 

  29. Ferreira E, Carceller AM, Agogue C, Martin BZ, St-André M, Francoeur D et al. Effects of selective serotonin reuptake inhibitors and venlafaxine during pregnancy in term and preterm neonates. Pediatrics 2007; 119: 52–59.

    Article  Google Scholar 

  30. Chambers CD, Hernandez-Diaz S, Van Marter LJ, Werler MM, Louik C, Jones KL et al. Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N Engl J Med 2006; 354: 579–587.

    Article  CAS  Google Scholar 

  31. Oberlander TF, Warburton W, Misri S, Aghajanian J, Hertzman C . Neonatal outcomes after prenatal exposure to selective serotonin reuptake inhibitor antidepressants and maternal depression using population-based linked health data. Arch Gen Psychiatry 2006; 63: 898–906.

    Article  Google Scholar 

  32. Oberlander TF, Bonaguro RJ, Misri S, Papsdorf M, Ross CJ, Simpson EM . Infant serotonin transporter (SLC6A4) promoter genotype is associated with adverse neonatal outcomes after prenatal exposure to serotonin reuptake inhibitor medications. Mol Psychiatry 2008; 13: 65–73.

    Article  CAS  Google Scholar 

  33. Berle JO, Steen VM, Aamo TO, Breilid H, Zahlsen K, Spigset O . Breastfeeding during maternal antidepressant treatment with serotonin reuptake inhibitors: infant exposure, clinical symptoms, and cytochrome p450 genotypes. J Clin Psychiatry 2004; 65: 1228–1234.

    Article  CAS  Google Scholar 

  34. Carcillo JA, Doughty L, Kofos D, Frye RF, Kaplan SS, Sasser H et al. Cytochrome P450 mediated-drug metabolism is reduced in children with sepsis-induced multiple organ failure. Intensive Care Med 2003; 29: 980–984.

    Article  Google Scholar 

  35. Del Vecchio A, Laforgia N, Capasso M, Iolascon A, Latini G . The role of molecular genetics in the pathogenesis and diagnosis of neonatal sepsis. Clin Perinatol 2004; 31: 53–67.

    Article  CAS  Google Scholar 

  36. Nebert DW, Mckinnon RA, Puga A . Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol 1996; 15: 273–280.

    Article  CAS  Google Scholar 

  37. Daly AK . Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 2003; 17: 27–41.

    Article  CAS  Google Scholar 

  38. Joseph T, Kusumakumary P, Chacko P, Abraham A, Radhakrishna Pillai M . Genetic polymorphism of CYP1A1, CYP2D6, GSTM1 and GSTT1 and susceptibility to acute lymphoblastic leukaemia in Indian children. Pediatr Blood Cancer 2004; 43: 560–567.

    Article  Google Scholar 

  39. Ashton LJ, Murray JE, Haber M, Marshall GM, Ashley DM, Norris MD . Polymorphisms in genes encoding drug metabolizing enzymes and their influence on the outcome of children with neuroblastoma. Pharmacogenet Genomics 2007; 17: 709–717.

    Article  CAS  Google Scholar 

  40. Creasy RK, Resnick R . Maternal-Fetal Medicine. Saunders: Philadelphia, 2004.

    Google Scholar 

  41. Wall TM, Schoedel K, Ring HZ, Luczak SE, Katsuyoshi DM, Tyndale RF . Differences in pharmacogenetics of nicotine and alcohol metabolism: review and recommendations for future research. Nicotine Tob Res 2007; 9 (Suppl 3): S459–S474.

    Article  CAS  Google Scholar 

  42. Van Dyke DC, Hodge SE, Heide F, Hill LR . Family studies in fetal phenytoin exposure. J Pediatr 1988; 113: 301–306.

    Article  CAS  Google Scholar 

  43. International Warfarin Pharmacogenetics Consortium Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009; 360: 753–764.

    Article  Google Scholar 

  44. Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR . Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci USA 2008; 105: 16266–16271.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Brian Mercer for his insightful comments and suggestions. We also thank Dorit Berlin and her colleagues at the pharmGKB for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y J Blumenfeld.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumenfeld, Y., Reynolds-May, M., Altman, R. et al. Maternal–fetal and neonatal pharmacogenomics: a review of current literature. J Perinatol 30, 571–579 (2010). https://doi.org/10.1038/jp.2009.183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2009.183

Keywords

This article is cited by

Search

Quick links